Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Gene Ther ; 33(3-4): 148-154, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35018834

RESUMO

Intravenous (IV) administration of naturally occurring adeno-associated virus (AAV) vectors are liver tropic, with a significant proportion of the total vector dose mediating gene expression in liver hepatocytes. AAV capsids that are directed toward other organs such as lung may be useful for therapy of nonliver-based diseases. Based on the knowledge that the lung capillary endothelium is the first capillary bed encountered by an intravenously administered AAV vector, and that the lung endothelium glycocalyx is enriched in negatively charged sialic acid, we hypothesized that adding positively changed lysine residues to the AAV capsid would enhance AAV biodistribution to the lung after IV administration. Using site-directed mutagenesis, two lysine residues were inserted into variable loop VIII of the AAV serotype 5 capsid (AAV5-PK2). Organ distribution of AAV5-PK2 was compared with that of AAV5, AAV2, and AAV2-7m8 4 weeks after IV administration (1011 gc) to C57Bl/6 male mice. As predicted, after IV administration, AAV5-PK2 had the highest biodistribution in the lung (p < 0.02 compared with AAV5, AAV2, and AAV2-7m8). Furthermore, biodistribution to liver of AAV5-PK2 was 2 logs decreased compared with AAV5 (p < 10-4) with a ratio of AAV5-PK2 lung to liver of 62-fold compared with AAV5 of 0.2-fold (p < 0.0003). The AAV5-PK2 capsid represents a lung-tropic AAV vector that is also significantly detargeted from the liver, a property that may be useful in lung-directed gene therapies.


Assuntos
Capsídeo , Parvovirinae , Animais , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Feminino , Vetores Genéticos/genética , Fígado/metabolismo , Pulmão/metabolismo , Lisina/análise , Lisina/genética , Lisina/metabolismo , Masculino , Camundongos , Parvovirinae/genética , Distribuição Tecidual , Transdução Genética
2.
JCI Insight ; 5(15)2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32759494

RESUMO

Alpha 1-antitrypsin (AAT) deficiency, a hereditary disorder characterized by low serum levels of functional AAT, is associated with early development of panacinar emphysema. AAT inhibits serine proteases, including neutrophil elastase, protecting the lung from proteolytic destruction. Cigarette smoke, pollution, and inflammatory cell-mediated oxidation of methionine (M) 351 and 358 inactivates AAT, limiting lung protection. In vitro studies using amino acid substitutions demonstrated that replacing M351 with valine (V) and M358 with leucine (L) on a normal M1 alanine (A) 213 background provided maximum antiprotease protection despite oxidant stress. We hypothesized that a onetime administration of a serotype 8 adeno-associated virus (AAV8) gene transfer vector coding for the oxidation-resistant variant AAT (A213/V351/L358; 8/AVL) would maintain antiprotease activity under oxidant stress compared with normal AAT (A213/M351/M358; 8/AMM). 8/AVL was administered via intravenous (IV) and intrapleural (IPL) routes to C57BL/6 mice. High, dose-dependent AAT levels were found in the serum and lung epithelial lining fluid (ELF) of mice administered 8/AVL or 8/AMM by IV or IPL. 8/AVL serum and ELF retained serine protease-inhibitory activity despite oxidant stress while 8/AMM function was abolished. 8/AVL represents a second-generation gene therapy for AAT deficiency providing effective antiprotease protection even with oxidant stress.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Oxidantes , Transgenes , Deficiência de alfa 1-Antitripsina/terapia , alfa 1-Antitripsina/administração & dosagem , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/patologia
3.
Mol Ther Methods Clin Dev ; 15: 72-82, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31649957

RESUMO

Aldehyde dehydrogenase 2 (ALDH2) deficiency causes "Asian flush syndrome," presenting as alcohol-induced facial flushing, tachycardia, nausea, and headaches. One of the most common hereditary enzyme deficiencies, it affects 35%-40% of East Asians and 8% of the world population. ALDH2 is the key enzyme in ethanol metabolism; with ethanol challenge, the common ALDH2*2 (E487K) mutation results in accumulation of toxic acetaldehyde. ALDH2*2 heterozygotes have increased risk for upper digestive tract cancers, compounded by smoking and drinking alcohol. We hypothesized that a one-time administration of an adeno-associated virus (AAV) gene transfer vector expressing the human ALDH2 coding sequence (AAVrh.10hALDH2) would correct the deficiency state. AAVrh.10hALDH2 was administered intravenously to Aldh2 knockout (Aldh2 -/-) and Aldh2 E487K knockin homozygous (Aldh2 E487K+/+) mice. Following acute ethanol ingestion, untreated ALDH2-deficient mice had elevated acetaldehyde levels and performed poorly in behavioral tests. In contrast, treated Aldh2 -/- and Aldh2 E487K+/+ mice had lower serum acetaldehyde levels and improved behavior. Thus, in vivo AAV-mediated ALDH2 therapy may reverse the deficiency state in ALDH2*2 individuals, eliminating the Asian flush syndrome and reducing the risk for associated disorders.

4.
Cancer Gene Ther ; 22(1): 1-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25501993

RESUMO

The median survival of glioblastoma multiforme (GBM) is approximately 1 year. Following surgical removal, systemic therapies are limited by the blood-brain barrier. To circumvent this, we developed a method to modify neurons with the genetic sequence for therapeutic monoclonal antibodies using adeno-associated virus (AAV) gene transfer vectors, directing persistent, local expression in the tumor milieu. The human U87MG GBM cell line or patient-derived early passage GBM cells were administered to the striatum of NOD/SCID immunodeficient mice. AAVrh.10BevMab, an AAVrh.10-based vector coding for bevacizumab (Avastin), an anti-human vascular endothelial growth factor (VEGF) monoclonal antibody, was delivered to the area of the GBM xenograft. Localized expression of bevacizumab was demonstrated by quantitative PCR, ELISA and western blotting. Immunohistochemistry showed that bevacizumab was expressed in neurons. Concurrent administration of AAVrh.10BevMab with the U87MG tumor reduced tumor blood vessel density and tumor volume, and increased survival. Administration of AAVrh.10BevMab 1 week after U87MG xenograft reduced growth and increased survival. Studies with patient-derived early passage GBM primary cells showed a reduction in primary tumor burden with an increased survival. These data support the strategy of AAV-mediated central nervous system gene therapy to treat GBM, overcoming the blood-brain barrier through local, persistent delivery of an anti-angiogenesis monoclonal antibody.


Assuntos
Anticorpos Monoclonais Humanizados/genética , Expressão Gênica , Glioblastoma/genética , Glioblastoma/terapia , Neovascularização Patológica/terapia , Neurônios/metabolismo , Animais , Bevacizumab , Encéfalo/metabolismo , Encéfalo/patologia , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Imageamento por Ressonância Magnética , Camundongos , Transdução Genética , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Hum Gene Ther Clin Dev ; 24(4): 161-73, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24191907

RESUMO

Alpha-1 antitrypsin (α1AT) deficiency is a common autosomal recessive disorder characterized by a marked reduction in serum α1AT levels, lung and liver disease. α1AT is mainly produced and secreted by hepatocytes, with its primary function to protect the lung against the proteolytic activity of neutrophil elastase. Serum α1AT levels <11 µM are associated with progressive destruction of lung parenchyma and early-onset of panacinar emphysema in the age range 35-45. The current approved treatment for α1AT deficiency is a costly protein augmentation therapy requiring weekly intravenous infusion of purified α1AT from pooled human plasma. Gene therapy offers the advantage of a single vector administration, eliminating the burden of the repeated purified protein infusions, with the consequent reduced overall drug cost and improved compliance. We have developed a novel, highly efficient gene therapy approach for α1AT deficiency based on the administration of AAVrh.10hα1AT, an adeno-associated viral vector serotype rh.10 coding for normal M-type human α1AT via the intrapleural route. On the basis of prior murine studies, this approach provides sustained α1AT proximal to the lung with a highly efficient vector. In support of a clinical trial for this approach, we carried out a study to assess the safety of intrapleural administration of AAVrh.10hα1AT to 280 mice and 36 nonhuman primates. The data demonstrate that this approach is safe, with no toxicity issues. Importantly, there was persistent expression of the human α1AT mRNA in chest cavity cells for the duration of the study (6 months in mice and 1 year in nonhuman primates). Together, these data support the initiation of a clinical trial of intrapleural human AAVrh.10hα1AT for the treatment of α1AT deficiency.


Assuntos
Dependovirus/genética , Terapia Genética , Vetores Genéticos/administração & dosagem , Deficiência de alfa 1-Antitripsina/terapia , alfa 1-Antitripsina/genética , Animais , Vetores Genéticos/efeitos adversos , Humanos , Injeções , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Primatas , alfa 1-Antitripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...