Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743690

RESUMO

Veraison marks the transition from berry growth to berry ripening and is a crucial phenological stage in grapevine (Vitis vinifera): the berries become soft and begin to accumulate sugars, aromatic substances, and, in red cultivars, anthocyanins for pigmentation, while the organic acid levels begin to decrease. These changes determine the potential quality of wine. However, rising global temperatures lead to earlier flowering and ripening, which strongly influence wine quality. Here, we combined genotyping-by-sequencing with a bioinformatics pipeline on ∼150 F1 genotypes derived from a cross between the early ripening variety 'Calardis Musqué' and the late-ripening variety 'Villard Blanc'. Starting from 20,410 haplotype-based markers, we generated a high-density genetic map and performed a quantitative trait locus analysis based on phenotypic datasets evaluated over 20 years. Through locus-specific-marker-enrichment and recombinant screening of ∼1000 additional genotypes, we refined the originally postulated 5 Mb veraison locus, Ver1, on chromosome 16 to only 112 kb, allowing us to pinpoint the ethylene response factor (ERF) VviERF027 (VCost.v3 gene ID: Vitvi16g00942, CRIBIv1 gene ID: VIT_16s0100g00400) as veraison candidate gene. Furthermore, the early veraison allele could be traced back to a clonal 'Pinot' variant first mentioned in the 17th century. 'Pinot Precoce Noir' passed this allele over 'Madeleine Royale' to the maternal grandparent 'Bacchus Weiss' and, ultimately, to the maternal parent 'Calardis Musqué'. Our findings are crucial for ripening time control, thereby improving wine quality, and for breeding grapevines adjusted to climate change scenarios that have a major impact on agro-ecosystems in altering crop plant phenology.

2.
Front Plant Sci ; 7: 1145, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27555851

RESUMO

The species-rich genus Peperomia (Black Pepper relatives) is the only genus among early diverging angiosperms where epiphytism evolved. The majority of fruits of Peperomia release sticky secretions or exhibit hook-shaped appendages indicative of epizoochorous dispersal, which is in contrast to other flowering plants, where epiphytes are generally characterized by fruit morphological adaptations for anemochory or endozoochory. We investigate fruit characters using Cryo-SEM. Comparative phylogenetic analyses are applied for the first time to include life form and fruit character information to study diversification in Peperomia. Likelihood ratio tests uncover correlated character evolution. We demonstrate that diversification within Peperomia is not homogenous across its phylogeny, and that net diversification rates increase by twofold within the most species-rich subgenus. In contrast to former land plant studies that provide general evidence for increased diversification in epiphytic lineages, we demonstrate that the evolution of epiphytism within Peperomia predates the diversification shift. An epiphytic-dependent diversification is only observed for the background phylogeny. An elevated frequency of life form transitions between epiphytes and terrestrials and thus evolutionary flexibility of life forms is uncovered to coincide with the diversification shift. The evolution of fruits showing dispersal related structures is key to diversification in the foreground region of the phylogeny and postdates the evolution of epiphytism. We conclude that the success of Peperomia, measured in species numbers, is likely the result of enhanced vertical and horizontal dispersal ability and life form flexibility but not the evolution of epiphytism itself.

3.
Planta ; 244(1): 145-54, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27002970

RESUMO

MAIN CONCLUSION: A mixture of resins based on aliphatic esters and carboxylic acids occurs in distantly related genera Peperomia and Roridula , serving different functions as adhesion in seed dispersal and prey capture. According to mechanical characteristics, adhesive secretions on both leaves of the carnivorous flypaper Roridula gorgonias and epizoochorous fruits of Peperomia polystachya were expected to be similar. The chemical analysis of these adhesives turned out to be challenging because of the limited available mass for analysis. Size exclusion chromatography and Fourier transform infrared spectroscopy were suitable methods for the identification of a mixture of compounds, most appropriately containing natural resins based on aliphatic esters and carboxylic acids. The IR spectra of the Peperomia and Roridula adhesive resemble each other; they correspond to that of a synthetic ethylene-vinyl acetate copolymer, but slightly differ from that of natural tree resins. Thus, the pressure sensitive adhesive properties of the plant adhesives are chemically proved. Such adhesives seem to appear independently in distantly related plant lineages, habitats, life forms, as well as plant organs, and serve different functions such as prey capture in Roridula and fruit dispersal in Peperomia. However, more detailed chemical analyses still remain challenging because of the small available volume of plant adhesive.


Assuntos
Adesivos/química , Magnoliopsida/química , Peperomia/química , Polivinil/química , Adesivos/análise , Animais , Cromatografia em Gel , Ecossistema , Frutas/química , Frutas/fisiologia , Insetos/fisiologia , Magnoliopsida/classificação , Magnoliopsida/fisiologia , Peperomia/fisiologia , Folhas de Planta/química , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Polivinil/análise , Dispersão de Sementes/fisiologia , Especificidade da Espécie , Espectroscopia de Infravermelho com Transformada de Fourier
4.
PLoS One ; 8(11): e79204, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24265760

RESUMO

Extreme haustorial parasites have long captured the interest of naturalists and scientists with their greatly reduced and highly specialized morphology. Along with the reduction or loss of photosynthesis, the plastid genome often decays as photosynthetic genes are released from selective constraint. This makes it challenging to use traditional plastid genes for parasitic plant phylogenetics, and has driven the search for alternative phylogenetic and molecular evolutionary markers. Thus, evolutionary studies, such as molecular clock-based age estimates, are not yet available for all parasitic lineages. In the present study, we extracted 14 nuclear single copy genes (nSCG) from Illumina transcriptome data from one of the "strangest plants in the world", Hydnora visseri (Hydnoraceae). A ~15,000 character molecular dataset, based on all three genomic compartments, shows the utility of nSCG for reconstructing phylogenetic relationships in parasitic lineages. A relaxed molecular clock approach with the same multi-locus dataset, revealed an ancient age of ~91 MYA for Hydnoraceae. We then estimated the stem ages of all independently originated parasitic angiosperm lineages using a published dataset, which also revealed a Cretaceous origin for Balanophoraceae, Cynomoriaceae and Apodanthaceae. With the exception of Santalales, older parasite lineages tend to be more specialized with respect to trophic level and have lower species diversity. We thus propose the "temporal specialization hypothesis" (TSH) implementing multiple independent specialization processes over time during parasitic angiosperm evolution.


Assuntos
Genes de Plantas , Magnoliopsida/genética , Traqueófitas/genética , Evolução Biológica , DNA Mitocondrial , Magnoliopsida/classificação , Mutação , Fotossíntese/genética , Filogenia , Plastídeos/genética , Traqueófitas/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...