Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 90(6): 2443-2453, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37466029

RESUMO

PURPOSE: Temporal resolution of time-lapse MRI to track individual iron-labeled cells is limited by the required data-acquisition time to fill k-space and to reach sufficient SNR. Although motion of slowly patrolling monocytes can be resolved, detection of fast-moving immune cells requires improved acquisition and reconstruction strategies. THEORY AND METHODS: For accelerated MRI cell tracking, a Cartesian sampling scheme was designed, in which the fully sampled and undersampled k-space data for different acceleration factors were acquired simultaneously, and multiple undersampling ratios could be chosen retrospectively. Compressed-sensing reconstruction was applied using dictionary learning and low-rank constraints. Detection of iron-labeled monocytes was evaluated with simulations, rotating phantom experiments and in vivo mouse brain measurements at 9.4 T. RESULTS: Fully sampled and 2.4-times and 4.8-times accelerated images were reconstructed and had sufficient contrast-to-noise ratio (CNR) for single cells to be resolved and followed dynamically. The phantom experiments showed an improvement in CNR of 6.1% per µm/s in the 4.8-times undersampled images. Geometric distortion of cells caused by motion was visibly reduced in the accelerated images, which enabled detection of moving cells with velocities of up to 7.0 µm/s. In vivo, additional cells were resolved in the accelerated images due to the improved temporal resolution. CONCLUSION: The easy-to-implement flexible Cartesian sampling scheme with compressed-sensing reconstruction permits simultaneous acquisition of both fully sampled and high temporal resolution images. The CNR of moving cells is effectively improved, enabling the recovery of high velocity cells with sufficient contrast at virtually no cost.


Assuntos
Rastreamento de Células , Imageamento por Ressonância Magnética , Animais , Camundongos , Estudos Retrospectivos , Imagem com Lapso de Tempo , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Processamento de Imagem Assistida por Computador/métodos
2.
EBioMedicine ; 73: 103670, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34742131

RESUMO

BACKGROUND: Immune cells show distinct motion patterns that change upon inflammatory stimuli. Monocytes patrol the vasculature to screen for pathogens, thereby exerting an early task of innate immunity. Here, we aimed to non-invasively analyse single patrolling monocyte behaviour upon inflammatory stimuli. METHODS: We used time-lapse Magnetic Resonance Imaging (MRI) of the murine brain to dynamically track single patrolling monocytes within the circulation distant to the actual site of inflammation in different inflammatory conditions, ranging from a subcutaneous pellet model to severe peritonitis and bacteraemia. FINDINGS: Single patrolling immune cells with a velocity of <1 µm/s could be detected and followed dynamically using time-lapse MRI. We show, that due to local and systemic stimuli the slowly patrolling behaviour of monocytes is altered systemically and differs with type, duration and strength of the underlying stimulus. INTERPRETATION: Using time-lapse MRI, it is now possible to investigate the behaviour of single circulating monocytes over the course of the systemic immune response. Monocyte patrolling behaviour is altered systemically even before the onset of clinical symptoms distant to and depending on the underlying inflammatory stimulus. FUNDING: This study was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - CRC 1009 - 194468054 to AZ, CF and - CRC 1450 - 431460824 to MM, SN, HB, AZ, CF, the Joachim Herz Foundation (Add-on Fellowship for Interdisciplinary Life Sciences to MM), the Interdisciplinary Centre for Clinical Research (IZKF, core unit PIX) and the Medical Faculty of the University of Muenster (MEDK fellowship to FF and IF).


Assuntos
Movimento Celular , Rastreamento de Células/métodos , Sistema Imunitário/citologia , Imageamento por Ressonância Magnética/métodos , Análise de Célula Única , Imagem com Lapso de Tempo , Animais , Biomassa , Movimento Celular/genética , Modelos Animais de Doenças , Feminino , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Monócitos , Análise de Célula Única/métodos
3.
Nano Lett ; 19(11): 7908-7917, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31556617

RESUMO

Iron oxide nanoparticles (ION) are highly sensitive probes for magnetic resonance imaging (MRI) that have previously been used for in vivo cell tracking and have enabled implementation of several diagnostic tools to detect and monitor disease. However, the in vivo MRI signal of ION can overlap with the signal from endogenous iron, resulting in a lack of detection specificity. Therefore, the long-term fate of administered ION remains largely unknown, and possible tissue deposition of iron cannot be assessed with established methods. Herein, we combine nonradioactive 57Fe-ION MRI with ex vivo laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging, enabling unambiguous differentiation between endogenous iron (56Fe) and iron originating from applied ION in mice. We establish 57Fe-ION as an in vivo MRI sensor for cell tracking in a mouse model of subcutaneous inflammation and for assessing the long-term fate of 57Fe-ION. Our approach resolves the lack of detection specificity in ION imaging by unambiguously recording a 57Fe signature.


Assuntos
Compostos Férricos/análise , Inflamação/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Nanopartículas/análise , Animais , Rastreamento de Células/métodos , Ferro/análise , Isótopos de Ferro/análise , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...