Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Mol Biol ; 107(1-2): 85-100, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34424501

RESUMO

KEY MESSAGE: Phosphoglycerate Dehydrogenase 1 of the phosphorylated pathway of serine biosynthesis, active in heterotrophic plastids, is required for the synthesis of serine to enable plant growth at high rates of indolic glucosinolate biosynthesis. Plants have evolved effective strategies to defend against various types of pathogens. The synthesis of a multitude of specialized metabolites represents one effective approach to keep plant attackers in check. The synthesis of those defense compounds is cost intensive and requires extensive interaction with primary metabolism. However, how primary metabolism is adjusted to fulfill the requirements of specialized metabolism is still not completely resolved. Here, we studied the role of the phosphorylated pathway of serine biosynthesis (PPSB) for the synthesis of glucosinolates, the main class of defensive compounds in the model plant Arabidopsis thaliana. We show that major genes of the PPSB are co-expressed with genes required for the synthesis of tryptophan, the unique precursor for the formation of indolic glucosinolates (IG). Transcriptional and metabolic characterization of loss-of-function and dominant mutants of ALTERED TRYPTOPHAN1-like transcription factors revealed demand driven activation of PPSB genes by major regulators of IG biosynthesis. Trans-activation of PPSB promoters by ATR1/MYB34 transcription factor in cultured root cells confirmed this finding. The content of IGs were significantly reduced in plants compromised in the PPSB and these plants showed higher sensitivity against treatment with 5-methyl-tryptophan, a characteristic behavior of mutants impaired in IG biosynthesis. We further found that serine produced by the PPSB is required to enable plant growth under conditions of high demand for IG. In addition, PPSB-deficient plants lack the growth promoting effect resulting from interaction with the beneficial root-colonizing fungus Colletotrichum tofieldiae.


Assuntos
Arabidopsis/metabolismo , Colletotrichum/fisiologia , Endófitos/fisiologia , Glucosinolatos/biossíntese , Indóis/metabolismo , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , Serina/biossíntese , Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Vias Biossintéticas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fosforilação , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Triptofano/biossíntese
2.
Front Plant Sci ; 12: 680255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276733

RESUMO

The biosynthesis of defensive secondary metabolites, such as glucosinolates (GSLs), is a costly process, which requires nutrients, ATP, and reduction equivalents, and, therefore, needs well-orchestrated machinery while coordinating defense and growth. We discovered that the key repressor of light signaling, the CONSTITUTIVE PHOTOMORPHOGENIC 1/SUPPRESSOR OF PHYTOCHROME A-105 (COP1/SPA) complex, is a crucial component of GSL biosynthesis regulation. Various mutants in this COP1/SPA complex exhibited a strongly reduced level of GSL and a low expression of jasmonate (JA)-dependent genes. Furthermore, cop1, which is known to accumulate DELLA proteins in the dark, shows reduced gibberellin (GA) and JA signaling, thereby phenocopying other DELLA-accumulating mutants. This phenotype can be complemented by a dominant gain-of-function allele of MYC3 and by crossing with a mutant having low DELLA protein levels. Hence, SPA1 interacts with DELLA proteins in a yeast two-hybrid screen, whereas high levels of DELLA inhibit MYC function and suppress JA signaling. DELLA accumulation leads to reduced synthesis of GSL and inhibited growth. Thus, the COP1/SPA-mediated degradation of DELLA not only affects growth but also regulates the biosynthesis of GSLs.

3.
Sci Rep ; 11(1): 1488, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452278

RESUMO

Nonhost resistance of Arabidopsis thaliana against the hemibiotrophic fungus Colletotrichum tropicale requires PEN2-dependent preinvasive resistance and CYP71A12 and CYP71A13-dependent postinvasive resistance, which both rely on tryptophan (Trp) metabolism. We here revealed that CYP71A12, CYP71A13 and PAD3 are critical for Arabidopsis' postinvasive basal resistance toward the necrotrophic Alternaria brassicicola. Consistent with this, gene expression and metabolite analyses suggested that the invasion by A. brassicicola triggered the CYP71A12-dependent production of indole-3-carboxylic acid derivatives and the PAD3 and CYP71A13-dependent production of camalexin. We next addressed the activation of the CYP71A12 and PAD3-dependent postinvasive resistance. We found that bak1-5 mutation significantly reduced postinvasive resistance against A. brassicicola, indicating that pattern recognition contributes to activation of this second defense-layer. However, the bak1-5 mutation had no detectable effects on the Trp-metabolism triggered by the fungal penetration. Together with this, further comparative gene expression analyses suggested that pathogen invasion in Arabidopsis activates (1) CYP71A12 and PAD3-related antifungal metabolism that is not hampered by bak1-5, and (2) a bak1-5 sensitive immune pathway that activates the expression of antimicrobial proteins.


Assuntos
Alternaria/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Serina-Treonina Quinases/genética , Triptofano/metabolismo , Alternaria/imunologia , Alternaria/patogenicidade , Arabidopsis/genética , Arabidopsis/imunologia , Sistema Enzimático do Citocromo P-450/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/genética , Indóis/metabolismo , Doenças das Plantas/microbiologia , Tiazóis/metabolismo
4.
Front Mol Biosci ; 8: 763795, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127814

RESUMO

Plants possess the most highly compartmentalized eukaryotic cells. To coordinate their intracellular functions, plastids and the mitochondria are dependent on the flow of information to and from the nuclei, known as retrograde and anterograde signals. One mobile retrograde signaling molecule is the monophosphate 3'-phosphoadenosine 5'-phosphate (PAP), which is mainly produced from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) in the cytosol and regulates the expression of a set of nuclear genes that modulate plant growth in response to biotic and abiotic stresses. The adenosine bisphosphate phosphatase enzyme SAL1 dephosphorylates PAP to AMP in plastids and the mitochondria, but can also rescue sal1 Arabidopsis phenotypes (PAP accumulation, leaf morphology, growth, etc.) when expressed in the cytosol and the nucleus. To understand better the roles of the SAL1 protein in chloroplasts, the mitochondria, nuclei, and the cytosol, we have attempted to complement the sal1 mutant by specifically cargoing the transgenic SAL1 protein to these four cell compartments. Overexpression of SAL1 protein targeted to the nucleus or the mitochondria alone, or co-targeted to chloroplasts and the mitochondria, complemented most aspects of the sal1 phenotypes. Notably, targeting SAL1 to chloroplasts or the cytosol did not effectively rescue the sal1 phenotypes as these transgenic lines accumulated very low levels of SAL1 protein despite overexpressing SAL1 mRNA, suggesting a possibly lower stability of the SAL1 protein in these compartments. The diverse transgenic SAL1 lines exhibited a range of PAP levels. The latter needs to reach certain thresholds in the cell for its impacts on different processes such as leaf growth, regulation of rosette morphology, sulfate homeostasis, and glucosinolate biosynthesis. Collectively, these findings provide an initial platform for further dissection of the role of the SAL1-PAP pathway in different cellular processes under stress conditions.

5.
Mol Plant Microbe Interact ; 34(5): 560-570, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33226310

RESUMO

The beneficial root-colonizing fungus Colletotrichum tofieldiae mediates plant growth promotion (PGP) upon phosphate (Pi) starvation in Arabidopsis thaliana. This activity is dependent on the Trp metabolism of the host, including indole glucosinolate (IG) hydrolysis. Here, we show that C. tofieldiae resolves several Pi starvation-induced molecular processes in the host, one of which is the downregulation of auxin signaling in germ-free plants, which is restored in the presence of the fungus. Using CRISPR/Cas9 genome editing, we generated an Arabidopsis triple mutant lacking three homologous nitrilases (NIT1 to NIT3) that are thought to link IG-hydrolysis products with auxin biosynthesis. Retained C. tofieldiae-induced PGP in nit1/2/3 mutant plants demonstrated that this metabolic connection is dispensable for the beneficial activity of the fungus. This suggests that either there is an alternative metabolic link between IG-hydrolysis products and auxin biosynthesis, or C. tofieldiae restores auxin signaling independently of IG metabolism. We show that C. tofieldiae, similar to pathogenic microorganisms, triggers Arabidopsis immune pathways that rely on IG metabolism as well as salicylic acid and ethylene signaling. Analysis of IG-deficient myb mutants revealed that these metabolites are, indeed, important for control of in planta C. tofieldiae growth: however, enhanced C. tofieldiae biomass does not necessarily negatively correlate with PGP. We show that Pi deficiency enables more efficient colonization of Arabidopsis by C. tofieldiae, possibly due to the MYC2-mediated repression of ethylene signaling and changes in the constitutive IG composition in roots.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Colletotrichum , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Colletotrichum/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Redes e Vias Metabólicas , Fosfatos , Raízes de Plantas/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(24): 13792-13799, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32471952

RESUMO

DELLA transcriptional regulators are central components in the control of plant growth responses to the environment. This control is considered to be mediated by changes in the metabolism of the hormones gibberellins (GAs), which promote the degradation of DELLAs. However, here we show that warm temperature or shade reduced the stability of a GA-insensitive DELLA allele in Arabidopsis thaliana Furthermore, the degradation of DELLA induced by the warmth preceded changes in GA levels and depended on the E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). COP1 enhanced the degradation of normal and GA-insensitive DELLA alleles when coexpressed in Nicotiana benthamiana. DELLA proteins physically interacted with COP1 in yeast, mammalian, and plant cells. This interaction was enhanced by the COP1 complex partner SUPRESSOR OF phyA-105 1 (SPA1). The level of ubiquitination of DELLA was enhanced by COP1 and COP1 ubiquitinated DELLA proteins in vitro. We propose that DELLAs are destabilized not only by the canonical GA-dependent pathway but also by COP1 and that this control is relevant for growth responses to shade and warm temperature.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/química , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Estabilidade Proteica , Proteólise , Proteínas Repressoras/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
7.
New Phytol ; 225(1): 400-412, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31411742

RESUMO

Effective defense of Arabidopsis against filamentous pathogens requires two mechanisms, both of which involve biosynthesis of tryptophan (Trp)-derived metabolites. Extracellular resistance involves products of PEN2-dependent metabolism of indole glucosinolates (IGs). Restriction of further fungal growth requires PAD3-dependent camalexin and other, as yet uncharacterized, indolics. This study focuses on the function of CYP71A12 monooxygenase in pathogen-triggered Trp metabolism, including the biosynthesis of indole-3-carboxylic acid (ICA). Moreover, to investigate the contribution of CYP71A12 and its products to Arabidopsis immunity, we analyzed infection phenotypes of multiple mutant lines combining pen2 with pad3, cyp71A12, cyp71A13 or cyp82C2. Metabolite profiling of cyp71A12 lines revealed a reduction in ICA accumulation. Additionally, analysis of mutant plants showed that low amounts of ICA can form during an immune response by CYP71B6/AAO1-dependent metabolism of indole acetonitrile, but not via IG hydrolysis. Infection assays with Plectosphaerella cucumerina and Colletotrichum tropicale, two pathogens with different lifestyles, revealed cyp71A12-, cyp71A13- and cyp82C2-associated defects associated with Arabidopsis immunity. Our results indicate that CYP71A12, but not CYP71A13, is the major enzyme responsible for the accumulation of ICA in Arabidopsis in response to pathogen ingression. We also show that both enzymes are key players in the resistance of Arabidopsis against selected filamentous pathogens after they invade.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/imunologia , Sistema Enzimático do Citocromo P-450/metabolismo , Imunidade Vegetal , Triptofano/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Ascomicetos/patogenicidade , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Glucosinolatos/metabolismo , Hidrólise , Indóis/metabolismo , Mutação/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Triptofano/biossíntese
8.
Plant Cell ; 31(1): 231-249, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30464037

RESUMO

The compartmentalization of PAPS (the sulfate donor 3'-phosphoadenosine 5'-phosphosulfate) synthesis (mainly in plastids), PAPS consumption (in the cytosol), and PAP (the stress signaling molecule 3'-phosphoadenosine 5'-phosphate) degradation (in plastids and mitochondria) requires organellar transport systems for both PAPS and PAP. The plastidial transporter PAPST1 (PAPS TRANSPORTER1) delivers newly synthesized PAPS from the stroma to the cytosol. We investigated the activity of PAPST2, the closest homolog of PAPST1, which unlike PAPST1 is targeted to both the plastids and mitochondria. Biochemical characterization in Arabidopsis thaliana revealed that PAPST2 mediates the antiport of PAP, PAPS, ATP, and ADP. Strongly increased cellular PAP levels negatively affect plant growth, as observed in the fry1 papst2 mutant, which lacks the PAP-catabolizing enzyme SALT TOLERANCE 1 and PAPST2. PAP levels were specifically elevated in the cytosol of papst2 and fiery1 papst2, but not in papst1 or fry1 papst1 PAPST1 failed to complement the papst2 mutant phenotype in mitochondria, because it likely removes PAPS from the cell, as demonstrated by the increased expression of phytosulfokine genes. Overexpression of SAL1 in mitochondria rescued the phenotype of fry1 but not fry1 papst2 Therefore, PAPST2 represents an important organellar importer of PAP, providing a piece of the puzzle in our understanding of the organelle-to-nucleus PAP retrograde signaling pathway.


Assuntos
Difosfato de Adenosina/metabolismo , Citosol/metabolismo , Plastídeos/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais
9.
Mol Plant ; 9(5): 682-695, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-26802248

RESUMO

MYB34, MYB51, and MYB122 transcription factors are known as decisive regulators of indolic glucosinolate (IG) biosynthesis with a strong impact on expression of genes encoding CYP79B2 and CYP79B3 enzymes that redundantly convert tryptophan to indole-3-acetaldoxime (IAOx). This intermediate represents a branching point for IG biosynthesis, and pathways leading to camalexin and indole-carboxylic acids (ICA). Here we investigate how these MYBs affect the pathogen-triggered Trp metabolism. Our experiments indicated that these three MYBs affect not only IG production but also constitutive biosynthesis of other IAOx-derived metabolites. Strikingly, the PENETRATION 2 (PEN2)-dependent IG-metabolism products, which are absent in myb34/51/122 and pen2 mutants, were indispensable for full flg22-mediated induction of other IAOx-derived compounds. However, gene induction and accumulation of ICAs and camalexin upon pathogen infection was not compromised in myb34/51/122 plants, despite strongly reduced IG levels. Hence, in comparison with cyp79B2/B3, which lacks all IAOx-derived metabolites, we found myb34/51/122 an ideal tool to analyze IG contribution to resistance against the necrotrophic fungal pathogen Plectosphaerella cucumerina. The susceptibility of myb34/51/122 was similar to that of pen2, but much lower than susceptibility of cyp79B2/B3, indicating that MYB34/51/122 contribute to resistance toward P. cucumerina exclusively through IG biosynthesis, and that PEN2 is the main leaf myrosinase activating IGs in response to microbial pathogens.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Fatores de Transcrição/metabolismo , Triptofano/metabolismo , Ascomicetos/patogenicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Indóis/metabolismo , N-Glicosil Hidrolases/metabolismo , Oximas/metabolismo , Imunidade Vegetal/fisiologia
10.
Front Plant Sci ; 6: 654, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26379682

RESUMO

The phytoalexin camalexin and indolic glucosinolates share not only a common evolutionary origin and a tightly interconnected biosynthetic pathway, but regulatory proteins controlling the shared enzymatic steps are also modulated by the same R2R3-MYB transcription factors. The indolic phytoalexin camalexin is a crucial defense metabolite in the model plant Arabidopsis. Indolic phytoalexins and glucosinolates appear to have a common evolutionary origin and are interconnected on the biosynthetic level: a key intermediate in the biosynthesis of camalexin, indole-3-acetaldoxime (IAOx), is also required for the biosynthesis of indolic glucosinolates and is under tight control by the transcription factors MYB34, MYB51, and MYB122. The abundance of camalexin was strongly reduced in myb34/51 and myb51/122 double and in triple myb mutant, suggesting that these transcription factors are important in camalexin biosynthesis. Furthermore, expression of MYB51 and MYB122 was significantly increased by biotic and abiotic camalexin-inducing agents. Feeding of the triple myb34/51/122 mutant with IAOx or indole-3-acetonitrile largely restored camalexin biosynthesis. Conversely, tryptophan could not complement the low camalexin phenotype of this mutant, which supports a role for the three MYB factors in camalexin biosynthesis upstream of IAOx. Consistently expression of the camalexin biosynthesis genes CYP71B15/PAD3 and CYP71A13 was not negatively affected in the triple myb mutant and the MYBs could not activate pCYP71B15::uidA expression in trans-activation assays with cultured Arabidopsis cells. In conclusion, this study reveals the importance of MYB factors regulating the generation of IAOx as precursor of camalexin.

11.
New Phytol ; 207(3): 841-57, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25919406

RESUMO

During a compatible interaction, the sebacinoid root-associated fungi Piriformospora indica and Sebacina vermifera induce modification of root morphology and enhance shoot growth in Arabidopsis thaliana. The genomic traits common in these two fungi were investigated and compared with those of other root-associated fungi and saprotrophs. The transcriptional responses of the two sebacinoid fungi and of Arabidopsis roots to colonization at three different symbiotic stages were analyzed by custom-designed microarrays. We identified key genomic features characteristic of sebacinoid fungi, such as expansions for gene families involved in hydrolytic activities, carbohydrate-binding and protein-protein interaction. Additionally, we show that colonization of Arabidopsis correlates with the induction of salicylic acid catabolism and accumulation of jasmonate and glucosinolates (GSLs). Genes involved in root developmental processes were specifically induced by S. vermifera at later stages during interaction. Using different Arabidopsis indole-GSLs mutants and measurement of secondary metabolites, we demonstrate the importance of the indolic glucosinolate pathway in the growth restriction of P. indica and S. vermifera and we identify indole-phytoalexins and specifically indole-carboxylic acids derivatives as potential key players in the maintenance of a mutualistic interaction with root endophytes.


Assuntos
Arabidopsis/microbiologia , Basidiomycota/fisiologia , Endófitos/fisiologia , Imunidade Inata , Imunidade Vegetal , Raízes de Plantas/fisiologia , Simbiose/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Basidiomycota/genética , Endófitos/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Genoma Fúngico , Glucosinolatos/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Hidrólise , Indóis/farmacologia , Metaboloma/efeitos dos fármacos , Mutação , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Estrutura Terciária de Proteína , Sesquiterpenos/farmacologia , Fitoalexinas
12.
Front Plant Sci ; 5: 626, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25426131

RESUMO

To balance the flux of sulfur (S) into glucosinolates (GSL) and primary metabolites plants exploit various regulatory mechanisms particularly important upon S deficiency (-S). The role of MYB34, MYB51 and MYB122 controlling the production of indolic glucosinolates (IGs) and MYB28, MYB29, and MYB76 regulating the biosynthesis of aliphatic glucosinolates (AGs) in Arabidopsis thaliana has not been fully addressed at -S conditions yet. We show that the decline in the concentrations of GSL during S depletion does not coincide with the globally decreased transcription of R2R3-MYBs. Whereas the levels of GSL are diminished, the expression of MYB34, MYB51, MYB122, and MYB28 is hardly changed in early phase of S limitation. Furthermore, the mRNA levels of these MYBs start to raise under prolonged S starvation. In parallel, we found that SLIM1 can downregulate the MYBs in vitro as demonstrated in trans-activation assays in cultured Arabidopsis cells with SLIM1 as effector and ProMYB51:uidA as a reporter construct. However, in vivo, only the mRNA of MYB29 and MYB76 correlated with the levels of GSL at -S. We propose that the negative effect of SLIM1 on GSL regulatory genes can be overridden by a "low GSL signal" inducing the transcription of MYBs in a feedback regulatory loop. In accordance with this hypothesis, the expression of MYB34, MYB51, MYB122, and CYP83B1 was further induced in cyp79b2 cyp79b3 mutant exposed to -S conditions vs. cyp79b2 cyp79b3 plants grown on control medium. In addition, the possible role of MYBs in the regulation of essential S assimilation enzymes, in the regulation of GSL biosynthesis upon accelerated termination of life cycles, in the mobilization of auxin and lateral root formation at S deficiency is discussed.

13.
Plant Physiol ; 166(1): 349-69, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25049362

RESUMO

By means of yeast (Saccharomyces cerevisiae) two-hybrid screening, we identified basic helix-loop-helix transcription factor05 (bHLH05) as an interacting partner of MYB51, the key regulator of indolic glucosinolates (GSLs) in Arabidopsis (Arabidopsis thaliana). Furthermore, we show that bHLH04, bHLH05, and bHLH06/MYC2 also interact with other R2R3-MYBs regulating GSL biosynthesis. Analysis of bhlh loss-of-function mutants revealed that the single bhlh mutants retained GSL levels that were similar to those in wild-type plants, whereas the triple bhlh04/05/06 mutant was depleted in the production of GSL. Unlike bhlh04/06 and bhlh05/06 mutants, the double bhlh04/05 mutant was strongly affected in the production of GSL, pointing to a special role of bHLH04 and bHLH05 in the control of GSL levels in the absence of jasmonic acid. The combination of two specific gain-of-function alleles of MYB and bHLH proteins had an additive effect on GSL levels, as demonstrated by the analysis of the double MYB34-1D bHLH05D94N mutant, which produces 20-fold more indolic GSLs than bHLH05D94N and ecotype Columbia-0 of Arabidopsis. The amino acid substitution D94N in bHLH05D94N negatively affects the interaction with JASMONATE-ZIM DOMAIN protein, thereby resulting in constitutive activation of bHLH05 and mimicking jasmonic acid treatment. Our study revealed the bHLH04, bHLH05, and bHLH06/MYC2 factors as novel regulators of GSL biosynthesis in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Glucosinolatos/biossíntese , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Linhagem Celular , Humanos , Domínios e Motivos de Interação entre Proteínas , Proteínas Repressoras/metabolismo , Técnicas do Sistema de Duplo-Híbrido
14.
Mol Plant ; 7(7): 1191-210, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24908268

RESUMO

Hydrogen peroxide (H2O2) operates as a signaling molecule in eukaryotes, but the specificity of its signaling capacities remains largely unrevealed. Here, we analyzed whether a moderate production of H2O2 from two different plant cellular compartments has divergent effects on the plant transcriptome. Arabidopsis thaliana overexpressing glycolate oxidase in the chloroplast (Fahnenstich et al., 2008; Balazadeh et al., 2012) and plants deficient in peroxisomal catalase (Queval et al., 2007; Inzé et al., 2012) were grown under non-photorespiratory conditions and then transferred to photorespiratory conditions to foster the production of H2O2 in both organelles. We show that H2O2 originating in a specific organelle induces two types of responses: one that integrates signals independently from the subcellular site of H2O2 production and another that is dependent on the H2O2 production site. H2O2 produced in peroxisomes induces transcripts involved in protein repair responses, while H2O2 produced in chloroplasts induces early signaling responses, including transcription factors and biosynthetic genes involved in production of secondary signaling messengers. There is a significant bias towards the induction of genes involved in responses to wounding and pathogen attack by chloroplastic-produced H2O2, including indolic glucosinolates-, camalexin-, and stigmasterol-biosynthetic genes. These transcriptional responses were accompanied by the accumulation of 4-methoxy-indol-3-ylmethyl glucosinolate and stigmasterol.


Assuntos
Arabidopsis/citologia , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxissomos/metabolismo , Transcriptoma , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Dióxido de Carbono/farmacologia , Cloroplastos/efeitos dos fármacos , Genoma de Planta/genética , Cinética , Metabolômica , Peroxissomos/efeitos dos fármacos , Plantas Geneticamente Modificadas , Estigmasterol/metabolismo , Transcriptoma/efeitos dos fármacos , Triptofano/metabolismo
15.
Mol Plant ; 7(5): 814-28, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24431192

RESUMO

The MYB34, MYB51, and MYB122 transcription factors are known to regulate indolic glucosinolate (IG) biosynthesis in Arabidopsis thaliana. To determine the distinct regulatory potential of MYB34, MYB51, and MYB122, the accumulation of IGs in different parts of plants and upon treatment with plant hormones were analyzed in A. thaliana seedlings. It was shown that MYB34, MYB51, and MYB122 act together to control the biosynthesis of I3M in shoots and roots, with MYB34 controlling biosynthesis of IGs mainly in the roots, MYB51 regulating biosynthesis in shoots, and MYB122 having an accessory role in the biosynthesis of IGs. Analysis of glucosinolate levels in seedlings of myb34, myb51, myb122, myb34 myb51 double, and myb34 myb51 myb122 triple knockout mutants grown in the presence of abscisic acid (ABA), salicylic acid (SA), jasmonate (JA), or ethylene (ET) revealed that: (1) MYB51 is the central regulator of IG synthesis upon SA and ET signaling, (2) MYB34 is the key regulator upon ABA and JA signaling, and (3) MYB122 plays only a minor role in JA/ET-induced glucosinolate biosynthesis. The myb34 myb51 myb122 triple mutant is devoid of IGs, indicating that these three MYB factors are indispensable for IG production under standard growth conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glucosinolatos/biossíntese , Fatores de Transcrição/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ciclopentanos/farmacologia , Etilenos/farmacologia , Mutação , Oxilipinas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/metabolismo , Ácido Salicílico/farmacologia , Fatores de Transcrição/genética
16.
Plants (Basel) ; 3(3): 324-47, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-27135507

RESUMO

Amidases [EC 3.5.1.4] capable of converting indole-3-acetamide (IAM) into the major plant growth hormone indole-3-acetic acid (IAA) are assumed to be involved in auxin de novo biosynthesis. With the emerging amount of genomics data, it was possible to identify over forty proteins with substantial homology to the already characterized amidases from Arabidopsis and tobacco. The observed high conservation of amidase-like proteins throughout the plant kingdom may suggest an important role of theses enzymes in plant development. Here, we report cloning and functional analysis of four, thus far, uncharacterized plant amidases from Oryza sativa, Sorghum bicolor, Medicago truncatula, and Populus trichocarpa. Intriguingly, we were able to demonstrate that the examined amidases are also capable of converting phenyl-2-acetamide (PAM) into phenyl-2-acetic acid (PAA), an auxin endogenous to several plant species including Arabidopsis. Furthermore, we compared the subcellular localization of the enzymes to that of Arabidopsis AMI1, providing further evidence for similar enzymatic functions. Our results point to the presence of a presumably conserved pathway of auxin biosynthesis via IAM, as amidases, both of monocot, and dicot origins, were analyzed.

17.
Plant Cell ; 25(12): 5011-29, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24368794

RESUMO

In plants, two independent serine biosynthetic pathways, the photorespiratory and glycolytic phosphoserine (PS) pathways, have been postulated. Although the photorespiratory pathway is well characterized, little information is available on the function of the PS pathway in plants. Here, we present a detailed characterization of phosphoglycerate dehydrogenases (PGDHs) as components of the PS pathway in Arabidopsis thaliana. All PGDHs localize to plastids and possess similar kinetic properties, but they differ with respect to their sensitivity to serine feedback inhibition. Furthermore, analysis of pgdh1 and phosphoserine phosphatase mutants revealed an embryo-lethal phenotype and PGDH1-silenced lines were inhibited in growth. Metabolic analyses of PGDH1-silenced lines grown under ambient and high CO2 conditions indicate a direct link between PS biosynthesis and ammonium assimilation. In addition, we obtained several lines of evidence for an interconnection between PS and tryptophan biosynthesis, because the expression of PGDH1 and phosphoserine aminotransferase1 is regulated by MYB51 and MYB34, two activators of tryptophan biosynthesis. Moreover, the concentration of tryptophan-derived glucosinolates and auxin were reduced in PGDH1-silenced plants. In essence, our results provide evidence for a vital function of PS biosynthesis for plant development and metabolism.


Assuntos
Compostos de Amônio/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , Fosfoglicerato Desidrogenase/fisiologia , Triptofano/biossíntese , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas , Retroalimentação Fisiológica , Regulação da Expressão Gênica de Plantas , Isoenzimas/genética , Isoenzimas/metabolismo , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Fosfosserina/metabolismo , Plastídeos/metabolismo
18.
Front Plant Sci ; 3: 242, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23115560

RESUMO

Glucosinolates (GS) are important plant secondary metabolites in plant resistance to herbivores, bacteria, and fungi, which have been shown to be accumulating in different organs and tissue types at varying concentrations. There are more than 200 GS species found in order Brassicales and presence of these compounds is well documented on organ-specific but not on cell-specific level. We used UPLC/ESI-QTOF-MS to measure the presence of GS and qRT-PCR to analyse the expression of GS biosynthetic and regulatory genes in isolated Arabidopsis thaliana trichomes. Trichomes of Arabidopsis are shown to synthesize chemoprotective aliphatic glucosinolates (AGS) and indolic glucosinolates (IGS), which are known for their biological activities against fungi, bacterial pathogens, or herbivores. UPLC/ESI-QTOF-MS analysis of various IGS mutants reveal increased or decreased levels of IGS in trichomes of gain- and loss-of-function mutants correspondingly. Using pMYB51/HIG1-uidA and pMYB28/PMG1/HAG1-uidA reporter plants we demonstrate that production of these important compounds is activated in trichomes of leaves or inflorescences in response to wounding. Since trichomes represent the first interface in plant-environment interactions, the possible role of GS containing trichomes in plant defense or signaling is discussed.

19.
Plant Cell ; 24(10): 4187-204, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23085732

RESUMO

3'-Phosphoadenosine 5'-phosphosulfate (PAPS) is the high-energy sulfate donor for sulfation reactions. Plants produce some PAPS in the cytosol, but it is predominantly produced in plastids. Accordingly, PAPS has to be provided by plastids to serve as a substrate for sulfotransferase reactions in the cytosol and the Golgi apparatus. We present several lines of evidence that the recently described Arabidopsis thaliana thylakoid ADP/ATP carrier TAAC transports PAPS across the plastid envelope and thus fulfills an additional function of high physiological relevance. Transport studies using the recombinant protein revealed that it favors PAPS, 3'-phosphoadenosine 5'-phosphate, and ATP as substrates; thus, we named it PAPST1. The protein could be detected both in the plastid envelope membrane and in thylakoids, and it is present in plastids of autotrophic and heterotrophic tissues. TAAC/PAPST1 belongs to the mitochondrial carrier family in contrast with the known animal PAPS transporters, which are members of the nucleotide-sugar transporter family. The expression of the PAPST1 gene is regulated by the same MYB transcription factors also regulating the biosynthesis of sulfated secondary metabolites, glucosinolates. Molecular and physiological analyses of papst1 mutant plants indicate that PAPST1 is involved in several aspects of sulfur metabolism, including the biosynthesis of thiols, glucosinolates, and phytosulfokines.


Assuntos
Antiporters/fisiologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Citosol/metabolismo , Fosfoadenosina Fosfossulfato/metabolismo , Tilacoides/metabolismo , Antiporters/genética , Antiporters/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Fosfoadenosina Fosfossulfato/biossíntese , Plastídeos/metabolismo
20.
Plant J ; 62(1): 1-11, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20042022

RESUMO

Glucosinolates are plant secondary metabolites involved in responses to biotic stress. The final step of their synthesis is the transfer of a sulfo group from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) onto a desulfo precursor. Thus, glucosinolate synthesis is linked to sulfate assimilation. The sulfate donor for this reaction is synthesized from sulfate in two steps catalyzed by ATP sulfurylase (ATPS) and adenosine 5'-phosphosulfate kinase (APK). Here we demonstrate that R2R3-MYB transcription factors, which are known to regulate both aliphatic and indolic glucosinolate biosynthesis in Arabidopsis thaliana, also control genes of primary sulfate metabolism. Using trans-activation assays we found that two isoforms of APK, APK1, and APK2, are regulated by both classes of glucosinolate MYB transcription factors; whereas two ATPS genes, ATPS1 and ATPS3, are differentially regulated by these two groups of MYB factors. In addition, we show that the adenosine 5'-phosphosulfate reductases APR1, APR2, and APR3, which participate in primary sulfate reduction, are also activated by the MYB factors. These observations were confirmed by analysis of transgenic lines with modulated expression levels of the glucosinolate MYB factors. The changes in transcript levels also affected enzyme activities, the thiol content and the sulfate reduction rate in some of the transgenic plants. Altogether the data revealed that the MYB transcription factors regulate genes of primary sulfate metabolism and that the genes involved in the synthesis of activated sulfate are part of the glucosinolate biosynthesis network.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Glucosinolatos/biossíntese , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Sulfato Adenililtransferase/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Sulfato Adenililtransferase/genética , Sulfatos/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...