Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Phys Eng Express ; 6(5): 055021, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-33444252

RESUMO

OBJECTIVES: To study whether a dual-layer spectral CT scout scan-based areal BMD estimation method, called Spectral-detector based x-ray absorptiometry (SDXA), can differentiate patients with versus without osteoporotic fractures. METHODS: The ability of the method to differentiate patients with osteoporosis was evaluated by assessing the areal BMD at the spine (L1 to L4) in a group of 19 patients presenting at least one fracture and comparing these results to the areal BMD of age- and gender-matched controls (57 patients). Finally, the reproducibility of SDXA was evaluated in-vivo through the calculation of coefficients of variation (CV), using three repeated analyses performed on each patient. RESULTS: The average areal BMD of patients presenting fractures, measured with the scout scan-based method (0.86 ± 0.17 g cm-2), was found to be significantly lower than the average BMD of the control group (1.00 ± 0.17 g cm-2, p = 0.043). The reproducibility of the method in-vivo was found to be reasonable, with CVs ranging between 3.1 and 6.9%. CONCLUSIONS: The results illustrate that the SDXA method for DXA-equivalent areal BMD estimation -delivers the ability to distinguish patients presenting osteoporotic fractures. Considering the total number of CT examinations worldwide, SDXA could develop to be a useful tool for truly opportunistic osteoporosis screening for a future clinical day-to-day routine.


Assuntos
Absorciometria de Fóton/métodos , Densidade Óssea , Osteoporose/patologia , Fraturas por Osteoporose/patologia , Tomografia Computadorizada por Raios X/métodos , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteoporose/diagnóstico por imagem , Fraturas por Osteoporose/diagnóstico por imagem
2.
Eur Radiol ; 29(9): 4624-4634, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30758656

RESUMO

OBJECTIVES: To develop and evaluate a method for areal bone mineral density (aBMD) measurement based on dual-layer spectral CT scout scans. METHODS: A post-processing algorithm using a pair of 2D virtual mono-energetic scout images (VMSIs) was established in order to semi-automatically compute the aBMD at the spine similarly to DXA, using manual soft tissue segmentation, semi-automatic segmentation for the vertebrae, and automatic segmentation for the background. The method was assessed based on repetitive measurements of the standardized European Spine Phantom (ESP) using the standard scout scan tube current (30 mA) and other tube currents (10 to 200 mA), as well as using fat-equivalent extension rings simulating different patient habitus, and was compared to dual-energy X-ray absorptiometry (DXA). Moreover, the feasibility of the method was assessed in vivo in female patients. RESULTS: Derived from standard scout scans, aBMD values measured with the proposed method significantly correlated with DXA measurements (r = 0.9925, p < 0.001), and mean accuracy (DXA, 4.12%; scout, 1.60%) and precision (DXA, 2.64%; scout, 2.03%) were comparable between the two methods. Moreover, aBMD values assessed at different tube currents did not differ significantly (p ≥ 0.20 for all), suggesting that the presented method could be applied to scout scans with different settings. Finally, data derived from sample patients were concordant with BMD values from a reference age-matched population. CONCLUSIONS: Based on dual-layer spectral scout scans, aBMD measurements were fast and reliable and significantly correlated with the according DXA measurements in phantoms. Considering the number of CT acquisitions performed worldwide, this method could allow truly opportunistic osteoporosis screening. KEY POINTS: • 2D scout scans (localizer radiographs) from a dual-layer spectral CT scanner, which are mandatory parts of a CT examination, can be used to automatically determine areal bone mineral density (aBMD) at the spine. • The presented method allowed fast (< 25 s/patient), semi-automatic, and reliable DXA-equivalent aBMD measurements for state-of-the-art DXA phantoms at different tube settings and for various patient habitus, as well as for sample patients. • Considering the number of CT scout scan acquisitions performed worldwide on a daily basis, the presented technique could enable truly opportunistic osteoporosis screening with DXA-equivalent metrics, without involving higher radiation exposure since it only processes existing data that is acquired during each CT scan.


Assuntos
Densidade Óssea/fisiologia , Osteoporose/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Adulto , Fatores Etários , Idoso , Algoritmos , Estudos de Viabilidade , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Pessoa de Meia-Idade , Imagens de Fantasmas , Reprodutibilidade dos Testes , Coluna Vertebral/diagnóstico por imagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...