Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 23(12): 16196-208, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26193592

RESUMO

Sub-Nyquist time frequency packing technique was demonstrated for the first time in a super-channel field trial transmission over long-haul distances. The technique allows a limited spectral occupancy even with low order modulation formats. The transmission was successfully performed on a deployed Australian link between Sydney and Melbourne which included 995 km of uncompensated SMF with coexistent traffic. 40 and 100 Gb/s co-propagating channels were transmitted together with the super-channel in a 50 GHz ITU-T grid without additional penalty. The super-channel consisted of eight sub-channels with low-level modulation format, i.e. DP-QPSK, guaranteeing better OSNR robustness and reduced complexity with respect to higher order formats. At the receiver side, coherent detection was used together with iterative maximum-a-posteriori (MAP) detection and decoding. A 975 Gb/s DP-QPSK super-channel was successfully transmitted between Sydney and Melbourne within four 50GHz WSS channels (200 GHz). A maximum potential SE of 5.58 bit/s/Hz was achieved with an OSNR = 15.8 dB, comparable to the OSNR of the installed 100 Gb/s channels. The system reliability was proven through long term measurements. In addition, by closing the link in a loop back configuration, a potential SE∙d product of 9254 bit/s/Hz·km was achieved.

2.
Opt Express ; 23(8): 10741-6, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25969111

RESUMO

A novel InP monolithically integrated coherent transmitter has been designed, fabricated and tested. The photonic integrated circuit consists of a distributed Bragg reflector laser and a modified nested Mach-Zehnder modulator having tunable input power splitters. Back-to-back coherent transmission for PDM-QPSK signals is reported up to 10 Gbaud (40 Gb/s) using the integrated laser and up to 32Gbaud (128 Gb/s) using an external low phase noise laser.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...