Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 25(3): 035303, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24356374

RESUMO

Focused ion beam (FIB) technology is widely used to fabricate nanopores in solid-state membranes. These nanopores have desirable thermomechanical properties for applications such as high-throughput DNA sequencing. Using large scale molecular dynamics simulations of the FIB nanopore formation process, we show that there is a threshold ion delivery rate above which the mechanism underlying nanopore formation changes. At low rates nanopore formation is slow, with the rate proportional to the ion flux and therefore limited by the sputter rate of the target material. However, at higher fluxes nanopores form via a thermally dominated process, consistent with an explosive boiling mechanism. In this case, mass is rapidly rearranged via bubble growth and coalescence, much more quickly than would occur during sputtering. This mechanism has the potential to greatly speed up nanopore formation.

2.
J Acoust Soc Am ; 126(5): 2746-56, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19894850

RESUMO

Shock waves in liquids are known to cause spherical gas bubbles to rapidly collapse and form strong re-entrant jets in the direction of the propagating shock. The interaction of these jets with an adjacent viscous liquid is investigated using finite-volume simulation methods. This configuration serves as a model for tissue injury during shock-wave lithotripsy, a medical procedure to remove kidney stones. In this case, the viscous fluid provides a crude model for the tissue. It is found that for viscosities comparable to what might be expected in tissue, the jet that forms upon collapse of a small bubble fails to penetrate deeply into the viscous fluid "tissue." A simple model reproduces the penetration distance versus viscosity observed in the simulations and leads to a phenomenological model for the spreading of injury with multiple shocks. For a reasonable selection of a single efficiency parameter, this model is able to reproduce in vivo observations of an apparent 1000-shock threshold before wide-spread tissue injury occurs in targeted kidneys and the approximate extent of this injury after a typical clinical dose of 2000 shock waves.


Assuntos
Cálculos Renais/terapia , Rim/lesões , Litotripsia/efeitos adversos , Litotripsia/métodos , Modelos Biológicos , Líquidos Corporais , Gases , Humanos , Rim/patologia , Cálculos Renais/patologia , Viscosidade
3.
J Phys Condens Matter ; 21(22): 224018, 2009 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21715756

RESUMO

The ion-induced formation of nanometer-scale ripples on semiconductors, long known as the sputter erosion surface instability, is explained using a coupled atomistic-continuum framework. Molecular dynamics simulations of individual medium energy ion impacts on an amorphous silicon target show that the average effect of an incident ion is to leave an ångström-scale crater-like impression on the surface, complete with a crater rim. The summation of many such impacts on a micron-scale surface, combined with the smoothing effect of surface diffusion, leads to the formation of surface ripples aligned perpendicular to the projected ion beam direction. The same numerical approach can be used to evaluate the standard analytical model for this process, known as the Bradley-Harper model. Both Bradley-Harper surface evolution and the atomistically determined crater function surface evolution are computed over time under conditions similar to those for known experimental data. The results show that the surface mass rearrangement associated with the finite atomistic crater rims explains a key experimental observation, ripple amplitude saturation, which cannot be accurately explained using the Bradley-Harper model or any other known numerical or analytical model for the sputter erosion surface instability.

4.
J Phys Condens Matter ; 21(46): 464128, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21715892

RESUMO

The lubrication equation that governs the dynamics of thin liquid films can be augmented to account for stochastic stresses associated with the thermal fluctuations of the fluid. It has been suggested that under certain conditions the spreading rate of a liquid drop on a surface will be increased by these stochastic stresses. Here, an atomistic simulation of a spreading drop is designed to examine such a regime and provide a quantitative assessment of the stochastic lubrication equation for spreading. It is found that the atomistic drop does indeed spread faster than the standard lubrication equations would suggest and that the stochastic lubrication equation of Grün et al (2006 J. Stat. Phys. 122 1261-91) predicts the spread rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...