Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2021): 20240262, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38654646

RESUMO

The fossil fish Ptychodus Agassiz, 1834, characterized by a highly distinctive grinding dentition and an estimated gigantic body size (up to around 10 m), has remained one of the most enigmatic extinct elasmobranchs (i.e. sharks, skates and rays) for nearly two centuries. This widespread Cretaceous taxon is common in Albian to Campanian deposits from almost all continents. However, specimens mostly consist of isolated teeth or more or less complete dentitions, whereas cranial and post-cranial skeletal elements are very rare. Here we describe newly discovered material from the early Late Cretaceous of Mexico, including complete articulated specimens with preserved body outline, which reveals crucial information on the anatomy and systematic position of Ptychodus. Our phylogenetic and ecomorphological analyses indicate that ptychodontids were high-speed (tachypelagic) durophagous lamniforms (mackerel sharks), which occupied a specialized predatory niche previously unknown in fossil and extant elasmobranchs. Our results support the view that lamniforms were ecomorphologically highly diverse and represented the dominant group of sharks in Cretaceous marine ecosystems. Ptychodus may have fed predominantly on nektonic hard-shelled prey items such as ammonites and sea turtles rather than on benthic invertebrates, and its extinction during the Campanian, well before the end-Cretaceous crisis, might have been related to competition with emerging blunt-toothed globidensine and prognathodontine mosasaurs.


Assuntos
Fósseis , Filogenia , Tubarões , Animais , Fósseis/anatomia & histologia , México , Tubarões/anatomia & histologia , Tubarões/classificação , Tubarões/fisiologia , Evolução Biológica , Dente/anatomia & histologia
2.
Sci Adv ; 9(24): eadg2456, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37327335

RESUMO

In the dusk of the Mesozoic, advanced duck-billed dinosaurs (Hadrosauridae) were so successful that they likely outcompeted other herbivores, contributing to declines in dinosaur diversity. From Laurasia, hadrosaurids dispersed widely, colonizing Africa, South America, and, allegedly, Antarctica. Here, we present the first species of a duck-billed dinosaur from a subantarctic region, Gonkoken nanoi, of early Maastrichtian age in Magallanes, Chile. Unlike duckbills further north in Patagonia, Gonkoken descends from North American forms diverging shortly before the origin of Hadrosauridae. However, at the time, non-hadrosaurids in North America had become replaced by hadrosaurids. We propose that the ancestors of Gonkoken arrived earlier in South America and reached further south, into regions where hadrosaurids never arrived: All alleged subantarctic and Antarctic remains of hadrosaurids could belong to non-hadrosaurid duckbills like Gonkoken. Dinosaur faunas of the world underwent qualitatively different changes before the Cretaceous-Paleogene asteroid impact, which should be considered when discussing their possible vulnerability.


Assuntos
Dinossauros , Animais , Dinossauros/anatomia & histologia , Fósseis , Patos , Chile , América do Norte
3.
Science ; 371(6535): 1253-1256, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33737486

RESUMO

The ecomorphological diversity of extinct elasmobranchs is incompletely known. Here, we describe Aquilolamna milarcae, a bizarre probable planktivorous shark from early Late Cretaceous open marine deposits in Mexico. Aquilolamna, tentatively assigned to Lamniformes, is characterized by hypertrophied, slender pectoral fins. This previously unknown body plan represents an unexpected evolutionary experimentation with underwater flight among sharks, more than 30 million years before the rise of manta and devil rays (Mobulidae), and shows that winglike pectoral fins have evolved independently in two distantly related clades of filter-feeding elasmobranchs. This newly described group of highly specialized long-winged sharks (Aquilolamnidae) displays an aquilopelagic-like ecomorphotype and may have occupied, in late Mesozoic seas, the ecological niche filled by mobulids and other batoids after the Cretaceous-Paleogene boundary.


Assuntos
Evolução Biológica , Fósseis , Tubarões/anatomia & histologia , Tubarões/fisiologia , Nadadeiras de Animais/anatomia & histologia , Animais , Ecossistema , Elasmobrânquios/anatomia & histologia , Elasmobrânquios/fisiologia , Comportamento Alimentar , México , Oceanos e Mares , Paleodontologia , Plâncton , Tubarões/classificação , Natação , Dente/anatomia & histologia
4.
PLoS One ; 12(8): e0183345, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28854194

RESUMO

Preceramic human skeletal remains preserved in submerged caves near Tulum in the Mexican state of Quintana Roo, Mexico, reveal conflicting results regarding 14C dating. Here we use U-series techniques for dating a stalagmite overgrowing the pelvis of a human skeleton discovered in the submerged Chan Hol cave. The oldest closed system U/Th age comes from around 21 mm above the pelvis defining the terminus ante quem for the pelvis to 11311±370 y BP. However, the skeleton might be considerable older, probably as old as 13 ky BP as indicated by the speleothem stable isotope data. The Chan Hol individual confirms a late Pleistocene settling of Mesoamerica and represents one of the oldest human osteological remains in America.


Assuntos
Cavernas , Fósseis , Paleontologia/métodos , Datação Radiométrica/métodos , Radioisótopos de Carbono/metabolismo , Humanos , México , Pelve/anatomia & histologia , Esqueleto/anatomia & histologia , Tório/metabolismo , Fatores de Tempo , Urânio/metabolismo
5.
PLoS One ; 9(12): e113911, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25517726

RESUMO

The mobility of ray I was analysed in seventy-eight Early Permian to Late Cretaceous specimens of non-mammalian Synapsida and one extant mammal. In all non-mammaliamorph Synapsida investigated, ray I formed a digital arcade. The first phalanx was maximally extendable to the zero position in the metapodiophalangeal joint I. Metapodiale I was the functional equivalent to a basal phalanx of digits II-V. In contrast, there was no digital arcade in ray I in Mesozoic Mammaliamorpha. Phalanx 1 I was dorsally extendable and metapodiale I was functionally part of the metapodium. During the propulsion phase, autopodial rotation occurred in the majority of Synapsida with abducted limb posture. Regarding ray I, the reduction of autopodial rotation can be estimated, e.g., from the decrease of lateral rotation and medial abduction of the first phalanx in the metapodiophalangeal joint I. Autopodial rotation was high in Titanophoneus and reduced in derived Cynodontia. In Mammaliamorpha the mobility of the first ray suggests autopodial rolling in an approximately anterior direction. Most non-mammaliamorph Therapsida and probably some Mesozoic Mammaliamorpha had prehensile autopodia with an opposable ray I. In forms with a pronounced relief of the respective joints, ray I could be opposed to 90° against ray III. A strong transverse arch in the row of distalia supported the opposition movement of ray I and resulted in a convergence of the claws of digits II-V just by flexing those digits. A tight articular coherence in the digital joints of digits II-V during strong flexion supported a firm grip capacity. Usually the grip capacity was more pronounced in the manus than in the pes. Prehensile autopodia of carnivorous Therapsida may have been utilized to hold prey while biting, thus helping to avoid fractures of the laterally compressed fangs.


Assuntos
Cordados/anatomia & histologia , Cordados/fisiologia , Pé/fisiologia , Membro Anterior/fisiologia , Amplitude de Movimento Articular , Animais , Pé/anatomia & histologia , Membro Anterior/anatomia & histologia , Fósseis , Articulações/anatomia & histologia , Articulações/fisiologia , Osteologia , Paleontologia
6.
Anat Rec (Hoboken) ; 297(12): 2233-53, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24357452

RESUMO

Pterosaurs were the first vertebrates to achieve active flight, with some derived forms reaching enormous size. Accumulating fossil evidence confirms earlier indications that selection for large size in these flying forms resulted in a light, yet strong skeleton characterized by fusion of many bones of the trunk. However, this process also added mechanical constraints on the mobility of the thorax of large pterosaurs that likely limited the options available for lung ventilation. We present an alternative hypothesis to recent suggestions of an avian-like mechanism of costosternal pumping as the primary means of aspiration. An analysis of the joints among the vertebrae, ribs, sternum, and pectoral girdle of large pterosaurs indicates limited mobility of the ribcage and sternum. Comparisons with modes of lung ventilation in extant amniotes suggests that the stiffened thorax, coupled with mobile gastralia and prepubic bones, may be most consistent with an extracostal mechanism for lung ventilation in large pterodactyloids, perhaps similar to a crocodile-like visceral displacement system.


Assuntos
Evolução Biológica , Dinossauros/fisiologia , Pulmão/fisiologia , Respiração , Mecânica Respiratória , Animais , Dinossauros/anatomia & histologia , Dinossauros/classificação , Pulmão/anatomia & histologia , Filogenia
7.
PLoS One ; 7(7): e39312, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22792168

RESUMO

BACKGROUND: The 'Solnhofen Limestone' beds of the Southern Franconian Alb, Bavaria, southern Germany, have for centuries yielded important pterosaur specimens, most notably of the genera Pterodactylus and Rhamphorhynchus. Here we describe a new genus of non-pterodactyloid pterosaur based on an extremely well preserved fossil of a young juvenile: Bellubrunnus rothgaengeri (gen. et sp. nov.). METHODOLOGY/PRINCIPAL FINDINGS: The specimen was examined firsthand by all authors. Additional investigation and photography under UV light to reveal details of the bones not easily seen under normal lighting regimes was completed. CONCLUSIONS/SIGNIFICANCE: This taxon heralds from a newly explored locality that is older than the classic Solnhofen beds. While similar to Rhamphorhynchus, the new taxon differs in the number of teeth, shape of the humerus and femur, and limb proportions. Unlike other derived non-pterodacytyloids, Bellubrunnus lacks elongate chevrons and zygapophyses in the tail, and unlike all other known pterosaurs, the wingtips are curved anteriorly, potentially giving it a unique flight profile.


Assuntos
Dinossauros , Fósseis , Animais , Osso e Ossos/anatomia & histologia , Dinossauros/classificação , Alemanha
8.
PLoS One ; 7(3): e31945, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22412850

RESUMO

Associations of large vertebrates are exceedingly rare in the Late Jurassic Solnhofen Limestone of Bavaria, Southern Germany. However, there are five specimens of medium-sized pterosaur Rhamphorhynchus that lie adjacent to the rostrum of a large individual of the ganoid fish Aspidorhynchus. In one of these, a small leptolepidid fish is still sticking in the esophagus of the pterosaur and its stomach is full of fish debris. This suggests that the Rhamphorhynchus was seized during or immediately after a successful hunt. According to the fossil record, Rhamphorhynchus frequently were accidentally seized by large Aspidorhnychus. In some cases the fibrous tissue of the wing membrane got entangled with the rostral teeth such that the fish was unable to get rid of the pterosaur. Such encounters ended fatally for both. Intestinal contents of Aspidorhynchus-type fishes are known and mostly comprise fishes and in one single case a Homoeosaurus. Obviously Rhamphorhynchus did not belong to the prey spectrum of Aspidorhynchus.


Assuntos
Peixes , Fósseis , Répteis , Animais , Alemanha , Comportamento Predatório
9.
Anat Rec (Hoboken) ; 293(2): 243-58, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19957339

RESUMO

On the basis of a new, three-dimensionally preserved specimen of the Early Jurassic pterosaur Dorygnathus banthensis we present a reinterpretation of the pterosaur palate. The hard palate is formed by the extensive palatal plate of the maxilla and not by the palatine as has been generally reconstructed. This palatal plate of the maxilla emarginates the choana rostrally and rostrolaterally as in other archosaurs and lepidosaurs. The longitudinally elongate and dorsoventrally flat palatine in Dorygnathus is an isolated bone caudal to the palatal plate of the maxilla and morphologically and topographically it resembles that of crocodilians and birds, respectively. The palatine separates the choana laterally from the suborbital fenestra demonstrating the homologous nature of the (primary) choana in all archosaurs and lepidosaurs. Our study indicates that in basal pterosaurs the pterygo-ectopterygoid fenestra existed caudal to the suborbital fenestra, which became confluent with the adductor chamber in pterodactyloids thereby increasing the relative size of the adductor chamber and hence the mass of the jaw adductors. The choana in basal pterosaurs was relatively small compared with the interpterygoid vacuity. With increasing rostroventral inclination of the quadrates in more derived pterosaurs, the interpterygoid vacuity was reduced considerably, whereas the choana increased in size. This exceptional Dorygnathus specimen also shows a hitherto unknown pair of fenestrae situated at the palatal contact of the premaxilla-maxilla and might represent the aperture for the vomeronasal organ.


Assuntos
Dinossauros/anatomia & histologia , Maxila/anatomia & histologia , Palato Duro/anatomia & histologia , Animais , Evolução Biológica , Fósseis , Filogenia
10.
Proc Biol Sci ; 277(1678): 11-7, 2010 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19801376

RESUMO

The pre-sacral vertebrae of most sauropod dinosaurs were surrounded by interconnected, air-filled diverticula, penetrating into the bones and creating an intricate internal cavity system within the vertebrae. Computational finite-element models of two sauropod cervical vertebrae now demonstrate the mechanical reason for vertebral pneumaticity. The analyses show that the structure of the cervical vertebrae leads to an even distribution of all occurring stress fields along the vertebrae, concentrated mainly on their external surface and the vertebral laminae. The regions between vertebral laminae and the interior part of the vertebral body including thin bony struts and septa are mostly unloaded and pneumatic structures are positioned in these regions of minimal stress. The morphology of sauropod cervical vertebrae was influenced by strongly segmented axial neck muscles, which require only small attachment areas on each vertebra, and pneumatic epithelia that are able to resorb bone that is not mechanically loaded. The interaction of these soft tissues with the bony tissue of the vertebrae produced lightweight, air-filled vertebrae in which most stresses were borne by the external cortical bone. Cervical pneumaticity was therefore an important prerequisite for neck enlargement in sauropods. Thus, we expect that vertebral pneumaticity in other parts of the body to have a similar role in enabling gigantism.


Assuntos
Vértebras Cervicais/anatomia & histologia , Dinossauros/anatomia & histologia , Pescoço/anatomia & histologia , Animais , Vértebras Cervicais/fisiologia , Dinossauros/fisiologia , Análise de Elementos Finitos , Pescoço/fisiologia
11.
Anat Rec (Hoboken) ; 290(1): 32-47, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17441196

RESUMO

The orientation of the scapulocoracoid in sauropod dinosaurs is reconstructed based on comparative anatomical investigations of pectoral girdles of extant amniotes. In the reconstruction proposed here, the scapula of sauropods stands at an angle of at least 55 degrees to the horizontal plane in mechanical coherence with the sternal apparatus including the coracoids. The coracoids are oriented cranioventrally to the rib cage and the glenoid is directed mediolaterally, which allows the humerus to swing in a sagittal plane. The inclination of the scapula to the horizontal plane is reconstructed for Diplodocus (60-65 degrees), Camarasaurus (60-65 degrees), and Opisthocoelicaudia (55-65 degrees). The inclination of the scapulocoracoid has consequences for the overall body posture in Camarasaurus and Opisthocoelicaudia, where the dorsal contour would have ventrally declined toward the sacrum. Scapulocoracoid mobility depends on the arrangement of clavicles, the reconstruction of a coracosternal joint, and the reconstructed musculature of the shoulder girdle. In a crocodylian model of the shoulder musculature, m. serratus profundus and superficialis form a muscular sling, which suspends the trunk from the shoulder girdle and would allow a certain mobility of the scapulocoracoid. An avian model of the shoulder musculature would also mean suspension by means of the m. serratus complex, but indicates a closer connection of the scapula to the dorsal ribs, which would lead to more restricted movements of the scapulocoracoid in sauropods.


Assuntos
Osso e Ossos/anatomia & histologia , Dinossauros/anatomia & histologia , Fósseis , Paleontologia/métodos , Tórax/anatomia & histologia , Animais , Clavícula/anatomia & histologia , Úmero/anatomia & histologia , Postura , Costelas/anatomia & histologia , Escápula/anatomia & histologia , Esterno/anatomia & histologia
12.
Proc Biol Sci ; 273(1600): 2439-48, 2006 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16959633

RESUMO

While the crocodyliform lineage extends back over 200 million years (Myr) to the Late Triassic, modern forms-members of Eusuchia-do not appear until the Cretaceous. Eusuchia includes the crown group Crocodylia, which comprises Crocodyloidea, Alligatoroidea and Gavialoidea. Fossils of non-crocodylian eusuchians are currently rare and, in most instances, fragmentary. Consequently, the transition from Neosuchia to Crocodylia has been one of the most poorly understood areas of crocodyliform evolution. Here we describe a new crocodyliform from the mid-Cretaceous (98-95 Myr ago; Albian-Cenomanian) Winton Formation of Queensland, Australia, as the most primitive member of Eusuchia. The anatomical changes associated with the emergence of this taxon indicate a pivotal shift in the feeding and locomotor behaviour of crocodyliforms-a shift that may be linked to the subsequent rapid diversification of Eusuchia 20 Myr later during the Late Cretaceous and Early Tertiary. While Laurasia (in particular North America) is the most likely ancestral area for Crocodylia, the biogeographic events associated with the origin of Eusuchia are more complex. Although the fossil evidence is limited, it now seems likely that at least part of the early history of Eusuchia transpired in Gondwana.


Assuntos
Jacarés e Crocodilos , Evolução Biológica , Animais , Austrália , Fósseis , Esqueleto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...