Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(45): e2309743120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37922328

RESUMO

Oxidation of phosphite (HPO32-) to phosphate (HPO42-) releases electrons at a very low redox potential (E0'= -690 mV) which renders phosphite an excellent electron donor for microbial energy metabolism. To date, two pure cultures of strictly anaerobic bacteria have been isolated that run their energy metabolism on the basis of phosphite oxidation, the Gram-negative Desulfotignum phosphitoxidans (DSM 13687) and the Gram-positive Phosphitispora fastidiosa (DSM 112739). Here, we describe the key enzyme for dissimilatory phosphite oxidation in these bacteria. The enzyme catalyzed phosphite oxidation in the presence of adenosine monophosphate (AMP) to form adenosine diphosphate (ADP), with concomitant reduction of oxidized nicotinamide adenine dinucleotide (NAD+) to reduced nicotinamide adenine dinucleotide (NADH). The enzyme of P. fastidiosa was heterologously expressed in Escherichia coli. It has a molecular mass of 35.2 kDa and a high affinity for phosphite and NAD+. Its activity was enhanced more than 100-fold by addition of ADP-consuming adenylate kinase (myokinase) to a maximal activity between 30 and 80 mU x mg protein-1. A similar NAD-dependent enzyme oxidizing phosphite to phosphate with concomitant phosphorylation of AMP to ADP is found in D. phosphitoxidans, but this enzyme could not be heterologously expressed. Based on sequence analysis, these phosphite-oxidizing enzymes are related to nucleotide-diphosphate-sugar epimerases and indeed represent AMP-dependent phosphite dehydrogenases (ApdA). A reaction mechanism is proposed for this unusual type of substrate-level phosphorylation reaction.


Assuntos
NAD , Fosfitos , NAD/metabolismo , Fosfitos/metabolismo , Oxirredução , Monofosfato de Adenosina/metabolismo , Difosfato de Adenosina/metabolismo , Fosfatos
2.
BMC Microbiol ; 22(1): 227, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171563

RESUMO

BACKGROUND: Environmental contamination from synthetic plastics and their additives is a widespread problem. Phthalate esters are a class of refractory synthetic organic compounds which are widely used in plastics, coatings, and for several industrial applications such as packaging, pharmaceuticals, and/or paints. They are released into the environment during production, use and disposal, and some of them are potential mutagens and carcinogens. Isophthalate (1,3-benzenedicarboxylic acid) is a synthetic chemical that is globally produced at a million-ton scale for industrial applications and is considered a priority pollutant. Here we describe the biochemical characterization of an enzyme involved in anaerobic degradation of isophthalate by the syntrophically fermenting bacterium Syntrophorhabdus aromaticivorans strain UI that activate isophthalate to isophthalyl-CoA followed by its decarboxylation to benzoyl-CoA. RESULTS: Isophthalate:Coenzyme A ligase (IPCL, AMP-forming) that activates isophthalate to isophthalyl-CoA was heterologously expressed in E. coli (49.6 kDa) for biochemical characterization. IPCL is homologous to phenylacetate-CoA ligase that belongs to the family of ligases that form carbon-sulfur bonds. In the presence of coenzyme A, Mg2+ and ATP, IPCL converts isophthalate to isophthalyl-CoA, AMP and pyrophosphate (PPi). The enzyme was specifically induced after anaerobic growth of S. aromaticivorans in a medium containing isophthalate as the sole carbon source. Therefore, IPCL exhibited high substrate specificity and affinity towards isophthalate. Only substrates that are structurally related to isophthalate, such as glutarate and 3-hydroxybenzoate, could be partially converted to the respective coenzyme A esters. Notably, no activity could be measured with substrates such as phthalate, terephthalate and benzoate. Acetyl-CoA or succinyl-CoA did not serve as CoA donors. The enzyme has a theoretical pI of 6.8 and exhibited optimal activity between pH 7.0 to 7.5. The optimal temperature was between 25 °C and 37 °C. Denaturation temperature (Tm) of IPCL was found to be at about 63 °C. The apparent KM values for isophthalate, CoA, and ATP were 409 µM, 642 µM, and 3580 µM, respectively. Although S. aromaticivorans is a strictly anaerobic bacterium, the enzyme was found to be oxygen-insensitive and catalysed isophthalyl-CoA formation under both anoxic and oxic conditions. CONCLUSION: We have successfully cloned the ipcl gene, expressed and characterized the corresponding IPCL enzyme, which plays a key role in isophthalate activation that initiates its activation and further degradation by S. aromaticivorans. Its biochemical characterization represents an important step in the elucidation of the complete degradation pathway of isophthalate.


Assuntos
Difosfatos , Poluentes Ambientais , Acetilcoenzima A/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Anaerobiose , Composição de Bases , Benzoatos/metabolismo , Carbono , Carcinógenos , Coenzima A/metabolismo , Coenzima A Ligases , Escherichia coli/metabolismo , Glutaratos , Hidroxibenzoatos , Mutagênicos , Oxigênio , Fenilacetatos/metabolismo , Ácidos Ftálicos , Filogenia , Plásticos , RNA Ribossômico 16S , Análise de Sequência de DNA , Enxofre , Xenobióticos
3.
Cancers (Basel) ; 14(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35892863

RESUMO

Tumor-draining lymph nodes (LNs), composed of lymphocytes, antigen-presenting cells, and stromal cells, are highly relevant for tumor immunity and the efficacy of immunotherapies. Lymphatic endothelial cells (LECs) represent an important stromal cell type within LNs, and several distinct subsets of LECs that interact with various immune cells and regulate immune responses have been identified. In this study, we used single-cell RNA sequencing (scRNA-seq) to characterize LECs from LNs draining B16F10 melanomas compared to non-tumor-draining LNs. Several upregulated genes with immune-regulatory potential, especially in LECs lining the subcapsular sinus floor (fLECs), were identified and validated. Interestingly, some of these genes, namely, podoplanin, CD200, and BST2, affected the adhesion of macrophages to LN LECs in vitro. Congruently, lymphatic-specific podoplanin deletion led to a decrease in medullary sinus macrophages in tumor-draining LNs in vivo. In summary, our data show that tumor-derived factors induce transcriptional changes in LECs of the draining LNs, especially the fLECs, and that these changes may affect tumor immunity. We also identified a new function of podoplanin, which is expressed on all LECs, in mediating macrophage adhesion to LECs and their correct localization in LN sinuses.

4.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34878375

RESUMO

A new strictly anaerobic bacterium, strain DYL19T, was enriched and isolated with phosphite as the sole electron donor and CO2 as a single carbon source and electron acceptor from anaerobic sewage sludge sampled at a sewage treatment plant in Constance, Germany. It is a Gram-positive, spore-forming, slightly curved, rod-shaped bacterium which oxidizes phosphite to phosphate while reducing CO2 to biomass and small amounts of acetate. Optimal growth is observed at 30 °C, pH 7.2, with a doubling time of 3 days. Beyond phosphite, no further inorganic or organic electron donor can be used, and no other electron acceptor than CO2 is reduced. Sulphate inhibits growth with phosphite and CO2. The G+C content is 45.95 mol%, and dimethylmenaquinone-7 is the only quinone detectable in the cells. On the basis of 16S rRNA gene sequence analysis and other chemotaxonomic properties, strain DYL19T is described as the type strain of a new genus and species, Phosphitispora fastidiosa gen. nov., sp. nov.


Assuntos
Peptococcaceae/classificação , Fosfitos , Filogenia , Esgotos , Anaerobiose , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Alemanha , Oxirredução , Peptococcaceae/isolamento & purificação , Fosfitos/metabolismo , Quinonas/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Esgotos/microbiologia
5.
FASEB J ; 35(11): e22017, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34699642

RESUMO

Cellular interactions between endothelial cells and macrophages regulate macrophage localization and phenotype, but the mechanisms underlying these interactions are poorly understood. Here we explored the role of sialoglycans on lymphatic endothelial cells (LEC) in interactions with macrophage-expressed Siglec-1 (CD169). Lectin-binding assays and mass spectrometric analyses revealed that LEC from human skin express more sialylated glycans than the corresponding blood endothelial cells. Higher amounts of sialylated and/or sulfated glycans on LEC than BEC were consistently observed in murine skin, lung and lymph nodes. The floor LEC of the subcapsular sinus (SCS) in murine lymph nodes (LN) displayed sialylated glycans at particularly high densities. The sialoglycans of LN LEC were strongly bound by Siglec-1. Such binding plays an important role in the localization of Siglec-1+ LN-SCS macrophages, as their numbers are strongly reduced in mice expressing a Siglec-1 mutant that is defective in sialoglycan binding. The residual Siglec-1+ macrophages are less proliferative and have a more anti-inflammatory phenotype. We propose that the densely clustered, sialylated glycans on the SCS floor LEC are a key component of the macrophage niche, providing anchorage for the Siglec-1+ LN-SCS macrophages.


Assuntos
Células Endoteliais/metabolismo , Linfonodos/metabolismo , Macrófagos/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Pele/metabolismo , Animais , Células CHO , Cricetulus , Células Endoteliais/citologia , Humanos , Linfonodos/citologia , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células , Pele/citologia
6.
Curr Microbiol ; 78(5): 1763-1770, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33751185

RESUMO

Degradation of acetone and higher ketones has been described in detail for aerobic and nitrate-reducing bacteria. Among sulfate-reducing bacteria, degradation of acetone and other ketones is still an uncommon ability and has not been understood completely yet. In the present work, we show that Desulfotomaculum arcticum and Desulfotomaculum geothermicum are able to degrade acetone and butanone. Total proteomics of cell-free extracts of both organisms indicated an involvement of a thiamine diphosphate-dependent enzyme, a B12-dependent mutase, and a specific dehydrogenase during acetone degradation. Similar enzymes were recently described to be involved in acetone degradation by Desulfococcus biacutus. As there are so far only two described sulfate reducers able to degrade acetone, D. arcticum and D. geothermicum represent two further species with this capacity. All these bacteria appear to degrade acetone via the same set of enzymes and therefore via the same pathway.


Assuntos
Acetona , Desulfotomaculum , Deltaproteobacteria , Cetonas , Peptococcaceae
7.
BMC Microbiol ; 21(1): 50, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593288

RESUMO

BACKGROUND: Degradation of acetone by aerobic and nitrate-reducing bacteria can proceed via carboxylation to acetoacetate and subsequent thiolytic cleavage to two acetyl residues. A different strategy was identified in the sulfate-reducing bacterium Desulfococcus biacutus that involves formylation of acetone to 2-hydroxyisobutyryl-CoA. RESULTS: Utilization of short-chain ketones (acetone, butanone, 2-pentanone and 3-pentanone) and isopropanol by the sulfate reducer Desulfosarcina cetonica was investigated by differential proteome analyses and enzyme assays. Two-dimensional protein gel electrophoresis indicated that D. cetonica during growth with acetone expresses enzymes homologous to those described for Desulfococcus biacutus: a thiamine diphosphate (TDP)-requiring enzyme, two subunits of a B12-dependent mutase, and a NAD+-dependent dehydrogenase. Total proteomics of cell-free extracts confirmed these results and identified several additional ketone-inducible proteins. Acetone is activated, most likely mediated by the TDP-dependent enzyme, to a branched-chain CoA-ester, 2-hydroxyisobutyryl-CoA. This compound is linearized to 3-hydroxybutyryl-CoA by a coenzyme B12-dependent mutase followed by oxidation to acetoacetyl-CoA by a dehydrogenase. Proteomic analysis of isopropanol- and butanone-grown cells revealed the expression of a set of enzymes identical to that expressed during growth with acetone. Enzyme assays with cell-free extract of isopropanol- and butanone-grown cells support a B12-dependent isomerization. After growth with 2-pentanone or 3-pentanone, similar protein patterns were observed in cell-free extracts as those found after growth with acetone. CONCLUSIONS: According to these results, butanone and isopropanol, as well as the two pentanone isomers, are degraded by the same enzymes that are used also in acetone degradation. Our results indicate that the degradation of several short-chain ketones appears to be initiated by TDP-dependent formylation in sulfate-reducing bacteria.


Assuntos
2-Propanol/metabolismo , Acetona/metabolismo , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Cetonas/metabolismo , Sulfatos/metabolismo , 2-Propanol/farmacologia , Deltaproteobacteria/efeitos dos fármacos , Deltaproteobacteria/crescimento & desenvolvimento , Cetonas/química , Oxirredução , Proteoma , Proteômica/métodos
8.
Glycobiology ; 30(8): 490-499, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32039454

RESUMO

Vascular endothelia are covered with a dense glycocalix that is heavily sialylated. Sialylation of vascular glycoconjugates is involved in the regulation of cell-cell interactions, be it among endothelial cells at cell junctions or between endothelial and blood-borne cells. It also plays important roles in modulating the binding of soluble ligands and the signaling by vascular receptors. Here, we provide an overview over the sialylation-function relationships of glycoproteins expressed in the blood and lymphatic vasculature. We first describe cellular interactions in which sialic acid contributes in a stereospecific manner to glycan epitopes recognized by glycan-binding proteins. Our major focus is however on the rarely discussed examples of vascular glycoproteins whose biological functions are modulated by sialylation through other mechanisms.


Assuntos
Células Endoteliais/química , Glicoproteínas/metabolismo , Ácidos Siálicos/metabolismo , Animais , Células Endoteliais/metabolismo , Glicoproteínas/química , Humanos , Ácidos Siálicos/química
9.
Environ Microbiol Rep ; 10(3): 283-292, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29528562

RESUMO

Degradation of acetone by the sulfate-reducing bacterium Desulfococcus biacutus involves an acetone-activation reaction different from that used by aerobic or nitrate-reducing bacteria, because the small energy budget of sulfate-reducing bacteria does not allow for major expenditures into ATP-consuming carboxylation reactions. In the present study, an inducible coenzyme B12 -dependent conversion of 2-hydroxyisobutyryl-CoA to 3-hydroxybutyryl-CoA was demonstrated in cell-free extracts of acetone-grown D. biacutus cells, together with a NAD+ -dependent oxidation of 3-hydroxybutyryl-CoA to acetoacetyl-CoA. Genes encoding two mutase subunits and a dehydrogenase, which were found previously to be strongly induced during growth with acetone, were heterologously expressed in E. coli. The activities of the purified recombinant proteins matched with the inducible activities observed in cell-free extracts of acetone-grown D. biacutus: proteins (IMG locus tags) DebiaDRAFT_04573 and 04574 constituted a B12 -dependent 2-hydroxyisobutyryl-CoA/3-hydroxybutyryl-CoA mutase, and DebiaDRAFT_04571 was a 3-hydroxybutyryl-CoA dehydrogenase. Hence, these enzymes play key roles in the degradation of acetone and define an involvement of CoA esters in the pathway. Further, the involvement of 2-hydroxyisobutyryl-CoA strongly indicates that the carbonyl-C2 of acetone is added, most likely, to formyl-CoA through a TDP-dependent enzyme that is co-induced in acetone-grown cells and is encoded in the same gene cluster as the identified mutase and dehydrogenase.


Assuntos
3-Hidroxiacil-CoA Desidrogenases/metabolismo , Acetona/metabolismo , Proteínas de Bactérias/metabolismo , Deltaproteobacteria/enzimologia , Transferases Intramoleculares/metabolismo , 3-Hidroxiacil-CoA Desidrogenases/genética , 3-Hidroxiacil-CoA Desidrogenases/isolamento & purificação , Acil Coenzima A/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Biodegradação Ambiental , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/isolamento & purificação , Redes e Vias Metabólicas/fisiologia , Oxirredução , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
J Chromatogr A ; 1531: 143-150, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29174570

RESUMO

An easy to handle high-performance liquid chromatography (HPLC) method for the separation of structural isomers of short-chain aldehydes as their hydrazones is presented. Some aldehydes were not available as reference compounds, therefore, synthesis routes for these hydroxy-aldehydes and their dinitrophenylhydrazone derivatives are reported. The reported method has a detection limit of 2.4-16.1µg/L for the hydrazones and shows good linearity and reproducibility for various tested aldehydes.


Assuntos
Aldeídos/química , Cromatografia Líquida de Alta Pressão , Hidrazonas/química , Aldeídos/síntese química , Aldeídos/isolamento & purificação , Hidrazonas/síntese química , Hidrazonas/isolamento & purificação , Isomerismo
11.
BMC Microbiol ; 16(1): 280, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27884109

RESUMO

BACKGROUND: The strictly anaerobic, sulfate-reducing bacterium Desulfococcus biacutus can utilize acetone as sole carbon and energy source for growth. Whereas in aerobic and nitrate-reducing bacteria acetone is activated by carboxylation with CO2 to acetoacetate, D. biacutus involves CO as a cosubstrate for acetone activation through a different, so far unknown pathway. Proteomic studies indicated that, among others, a predicted medium-chain dehydrogenase/reductase (MDR) superfamily, zinc-dependent alcohol dehydrogenase (locus tag DebiaDRAFT_04514) is specifically and highly produced during growth with acetone. RESULTS: The MDR gene DebiaDRAFT_04514 was cloned and overexpressed in E. coli. The purified recombinant protein required zinc as cofactor, and accepted NADH/NAD+ but not NADPH/NADP+ as electron donor/acceptor. The pH optimum was at pH 8, and the temperature optimum at 45 °C. Highest specific activities were observed for reduction of C3 - C5-aldehydes with NADH, such as propanal to propanol (380 ± 15 mU mg-1 protein), butanal to butanol (300 ± 24 mU mg-1), and 3-hydroxybutanal to 1,3-butanediol (248 ± 60 mU mg-1), however, the enzyme also oxidized 3-hydroxybutanal with NAD+ to acetoacetaldehyde (83 ± 18 mU mg-1). CONCLUSION: The enzyme might play a key role in acetone degradation by D. biacutus, for example as a bifunctional 3-hydroxybutanal dehydrogenase/reductase. Its recombinant production may represent an important step in the elucidation of the complete degradation pathway.


Assuntos
Acetona/metabolismo , Aldeídos/metabolismo , Clonagem de Organismos , Deltaproteobacteria/enzimologia , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Acetaldeído/análogos & derivados , Acetaldeído/metabolismo , Acetona/química , Álcool Desidrogenase/metabolismo , Aldeídos/química , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Butanóis/metabolismo , Butileno Glicóis/química , Monóxido de Carbono/metabolismo , Coenzimas/metabolismo , Deltaproteobacteria/crescimento & desenvolvimento , Ativação Enzimática , Ensaios Enzimáticos , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Concentração de Íons de Hidrogênio , Redes e Vias Metabólicas/genética , NAD/metabolismo , NADP/metabolismo , Propanóis/metabolismo , Proteômica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Temperatura , Zinco/metabolismo
12.
J Mol Microbiol Biotechnol ; 26(1-3): 152-64, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26958851

RESUMO

Acetone and other ketones are activated for subsequent degradation through carboxylation by many nitrate-reducing, phototrophic, and obligately aerobic bacteria. Acetone carboxylation leads to acetoacetate, which is subsequently activated to a thioester and degraded via thiolysis. Two different types of acetone carboxylases have been described, which require either 2 or 4 ATP equivalents as an energy supply for the carboxylation reaction. Both enzymes appear to combine acetone enolphosphate with carbonic phosphate to form acetoacetate. A similar but more complex enzyme is known to carboxylate the aromatic ketone acetophenone, a metabolic intermediate in anaerobic ethylbenzene metabolism in denitrifying bacteria, with simultaneous hydrolysis of 2 ATP to 2 ADP. Obligately anaerobic sulfate-reducing bacteria activate acetone to a four-carbon compound as well, but via a different process than bicarbonate- or CO2-dependent carboxylation. The present evidence indicates that either carbon monoxide or a formyl residue is used as a cosubstrate, and that the overall ATP expenditure of this pathway is substantially lower than in the known acetone carboxylase reactions.


Assuntos
Acetona/química , Acetona/metabolismo , Bactérias Anaeróbias/metabolismo , Cetonas/química , Cetonas/metabolismo , Anaerobiose , Bactérias Anaeróbias/enzimologia , Bactérias Anaeróbias/genética , Carboxiliases/classificação , Carboxiliases/genética , Carboxiliases/metabolismo , Redes e Vias Metabólicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...