Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 12(7)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35884315

RESUMO

Microbioreactors (MBRs) with a volume below 1 mL are promising alternatives to established cultivation platforms such as shake flasks, lab-scale bioreactors and microtiter plates. Their main advantages are simple automatization and parallelization and the saving of expensive media components and test substances. These advantages are particularly pronounced in small-scale MBRs with a volume below 10 µL. However, most described small-scale MBRs are lacking in process information from integrated sensors due to limited space and sensor technology. Therefore, a novel capillary-wave microbioreactor (cwMBR) with a volume of only 7 µL has the potential to close this gap, as it combines a small volume with integrated sensors for biomass, pH, dissolved oxygen (DO) and glucose concentration. In the cwMBR, pH and DO are measured by established luminescent optical sensors on the bottom of the cwMBR. The novel glucose sensor is based on a modified oxygen sensor, which measures the oxygen uptake of glucose oxidase (GOx) in the presence of glucose up to a concentration of 15 mM. Furthermore, absorbance measurement allows biomass determination. The optical sensors enabled the characterization of an Escherichia coli batch cultivation over 8 h in the cwMBR as proof of concept for further bioprocesses. Hence, the cwMBR with integrated optical sensors has the potential for a wide range of microscale bioprocesses, including cell-based assays, screening applications and process development.


Assuntos
Reatores Biológicos , Oxigênio , Biomassa , Escherichia coli , Glucose
2.
Adv Biochem Eng Biotechnol ; 179: 67-100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32712680

RESUMO

Microbioreactors (MBRs) have emerged as potent cultivation devices enabling automated small-scale experiments in parallel while enhancing their cost efficiency. The widespread use of MBRs has contributed to recent advances in industrial and pharmaceutical biotechnology, and they have proved to be indispensable tools in the development of many modern bioprocesses. Being predominantly applied in early stage process development, they open up new fields of research and enhance the efficacy of biotechnological product development. Their reduced reaction volume is associated with numerous inherent advantages - particularly the possibility for enabling parallel screening operations that facilitate high-throughput cultivations with reduced sample consumption (or the use of rare and expensive educts). As a result, multiple variables can be examined in a shorter time and with a lower expense. This leads to a simultaneous acceleration of research and process development along with decreased costs.MBRs range from simple miniaturized cultivations vessels (i.e., in the milliliter scale with limited possibilities for process control) to highly complex and automated small-scale microreactors with integrated sensors that allow for comprehensive screenings in very short time or a precise reflection of large-scale cultivation conditions. Progressive developments and improvements in manufacturing and automation techniques are already helping researchers to make use of the advantages that MBRs offer. This overview of current MBR systems surveys the diverse application for microbial and mammalian cell cultivations that have been developed in recent years.


Assuntos
Reatores Biológicos , Biotecnologia , Animais , Biotecnologia/métodos , Mamíferos
3.
Sci Rep ; 11(1): 7276, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790348

RESUMO

With the technological advances in 3D printing technology, which are associated with ever-increasing printing resolution, additive manufacturing is now increasingly being used for rapid manufacturing of complex devices including microsystems development for laboratory applications. Personalized experimental devices or entire bioreactors of high complexity can be manufactured within few hours from start to finish. This study presents a customized 3D-printed micro bubble column reactor (3D-µBCR), which can be used for the cultivation of microorganisms (e.g., Saccharomyces cerevisiae) and allows online-monitoring of process parameters through integrated microsensor technology. The modular 3D-µBCR achieves rapid homogenization in less than 1 s and high oxygen transfer with kLa values up to 788 h-1 and is able to monitor biomass, pH, and DOT in the fluid phase, as well as CO2 and O2 in the gas phase. By extensive comparison of different reactor designs, the influence of the geometry on the resulting hydrodynamics was investigated. In order to quantify local flow patterns in the fluid, a three-dimensional and transient multiphase Computational Fluid Dynamics model was successfully developed and applied. The presented 3D-µBCR shows enormous potential for experimental parallelization and enables a high level of flexibility in reactor design, which can support versatile process development.

4.
Micromachines (Basel) ; 10(5)2019 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-31035561

RESUMO

Microbioreactors are gaining increased interest in biopharmaceutical research. Due to their decreasing size, the parallelization of multiple reactors allows for simultaneous experiments. This enables the generation of high amounts of valuable data with minimal consumption of precious pharmaceutical substances. However, in bioreactors of all scales, fast mixing represents a crucial condition. Efficient transportation of nutrients to the cells ensures good growing conditions, homogeneous environmental conditions for all cultivated cells, and therefore reproducible and valid data. For these reasons, a new type of batch microbioreactor was developed in which any moving mixer component is rendered obsolete through the utilization of capillary surface waves for homogenization. The bioreactor was fabricated in photosensitive glass and its fluid volume of up to 8 µL was provided within a bowl-shaped volume. External mechanical actuators excited capillary surface waves and stereo microparticle image velocimetry (µPIV) was used to analyze resulting convection at different excitation conditions in varied reactor geometries. Typical vortex patterns were observed at certain resonance frequencies where best mixing conditions occurred. Based on the results, a simplified 1D model which predicts resonance frequencies was evaluated. Cultivation of Escherichia coli BL21 under various mixing conditions showed that mixing in resonance increased the biomass growth rate, led to high biomass concentrations, and provided favorable growth conditions. Since glass slides containing multiple bowl reactors can be excited as a whole, massive parallelization is foreseen.

5.
RSC Adv ; 9(33): 19197-19204, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35516901

RESUMO

In this work, manipulating width and equilibrium position of fluorescent microparticles in spiral microchannel fractionation devices by embedding microchambers along the last turn of a spiral is reported. Microchambers with different shapes and sizes were tested at Reynolds numbers between 15.7 and 156.6 (100-1000 µL min-1) to observe focusing of 2, 5 and 10 µm fluorescent microparticles. This paper also discusses the fabrication process of the microfluidic chips with femtosecond laser ablation on glass wafers, as well as a particle imaging velocimetry (µPIV) study of microparticle trajectories inside a microchamber. It could be demonstrated with an improved final design with inclined microchamber side walls, that the 2 µm particle equilibrium position is shifted towards the inner wall by ∼27 µm and the focusing line's width is reduced by ∼18 µm. Finally, Saccharomyces cerevisiae yeast cells were tested in the final chip and a cell focusing efficiency of 99.1% is achieved.

6.
Appl Environ Microbiol ; 80(15): 4702-16, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24837393

RESUMO

Acetic acid bacteria (AAB) play an important role during cocoa fermentation, as their main product, acetate, is a major driver for the development of the desired cocoa flavors. Here, we investigated the specialized metabolism of these bacteria under cocoa pulp fermentation-simulating conditions. A carefully designed combination of parallel 13C isotope labeling experiments allowed the elucidation of intracellular fluxes in the complex environment of cocoa pulp, when lactate and ethanol were included as primary substrates among undefined ingredients. We demonstrate that AAB exhibit a functionally separated metabolism during coconsumption of two-carbon and three-carbon substrates. Acetate is almost exclusively derived from ethanol, while lactate serves for the formation of acetoin and biomass building blocks. Although this is suboptimal for cellular energetics, this allows maximized growth and conversion rates. The functional separation results from a lack of phosphoenolpyruvate carboxykinase and malic enzymes, typically present in bacteria to interconnect metabolism. In fact, gluconeogenesis is driven by pyruvate phosphate dikinase. Consequently, a balanced ratio of lactate and ethanol is important for the optimum performance of AAB. As lactate and ethanol are individually supplied by lactic acid bacteria and yeasts during the initial phase of cocoa fermentation, respectively, this underlines the importance of a well-balanced microbial consortium for a successful fermentation process. Indeed, AAB performed the best and produced the largest amounts of acetate in mixed culture experiments when lactic acid bacteria and yeasts were both present.


Assuntos
Acetatos/metabolismo , Ácido Acético/metabolismo , Bactérias/metabolismo , Cacau/microbiologia , Bactérias/enzimologia , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cacau/metabolismo , Etanol/metabolismo , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...