Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 44(23): 5828-5831, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31774790

RESUMO

The interband cascade laser (ICL) is an ideal candidate for low-power mid-infrared frequency comb spectroscopy. In this work, we demonstrate that its intracavity second-order optical nonlinearity induces a coherent up-conversion of the generated mid-infrared light to the near-infrared through second-harmonic and sum-frequency generation. At 1.8 µm, 10 mW of light at 3.6 µm convert into sub-nanowatt levels of optical power, spread across 30 nm of spectral coverage. The observed linear-to-nonlinear conversion efficiency exceeds ${3\;{\unicode{x00B5} {\rm W/W}}^2}$3µW/W2 in continuous wave operation. We use a dual-band ICL frequency comb source to characterize water vapor absorption in both spectral bands.

2.
Appl Opt ; 58(9): 2138-2145, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31044910

RESUMO

While whispering gallery mode resonators are well known for their low acceleration sensitivity, there has not been much published experimental research on the subject. We performed environmental sensitivity tests of a 2 µm semiconductor distributed feedback (DFB) laser, self-injection locked to a high-Q crystalline whispering gallery mode resonator. Measured acceleration sensitivity of the laser is below 5×10-11 g-1 in the 1-200 Hz frequency bandwidth and thermal sensitivity does not exceed 12 MHz/°C. The laser's frequency noise is below 50 Hz/Hz1/2 at 10 Hz, reaching 0.4 Hz/Hz1/2 at 400 kHz. The instantaneous linewidth of the laser is improved by nearly 4 orders of magnitude compared to the free-running DFB laser and is measured to be 50 Hz at 0.1 ms measurement time. The Allan deviation of the laser frequency is on the order of 10-9 from 1 to 1000 s. All these features make the laser attractive for metrology applications involving low-noise 2 µm seed lasers.

3.
Opt Lett ; 44(8): 2113-2116, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30985824

RESUMO

Two semiconductor optical frequency combs, consuming less than 1 W of electrical power, are used to demonstrate high-sensitivity mid-infrared dual-comb spectroscopy in the important 3-4 µm spectral region. The devices are 4 mm long by 4 µm wide, and each emits 8 mW of average optical power. The spectroscopic sensing performance is demonstrated by measurements of methane and hydrogen chloride with optical multi-pass cell sensitivity enhancement. The system provides a spectral coverage of 33 cm-1 (1 THz), 0.32 cm-1 (9.7 GHz) frequency sampling interval, and peak signal-to-noise ratio of ∼100 at 100 µs integration time. The monolithic design, low drive power, and direct generation of mid-infrared radiation are highly attractive for portable broadband spectroscopic instrumentation in future terrestrial and space applications.

4.
Sci Rep ; 8(1): 3322, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463807

RESUMO

Since their inception, optical frequency combs have transformed a broad range of technical and scientific disciplines, spanning time keeping to navigation. Recently, dual comb spectroscopy has emerged as an attractive alternative to traditional Fourier transform spectroscopy, since it offers higher measurement sensitivity in a fraction of the time. Midwave infrared (mid-IR) frequency combs are especially promising as an effective means for probing the strong fundamental absorption lines of numerous chemical and biological agents. Mid-IR combs have been realized via frequency down-conversion of a near-IR comb, by optical pumping of a micro-resonator, and beyond 7 µm by four-wave mixing in a quantum cascade laser. In this work, we demonstrate an electrically-driven frequency comb source that spans more than 1 THz of bandwidth centered near 3.6 µm. This is achieved by passively mode-locking an interband cascade laser (ICL) with gain and saturable absorber sections monolithically integrated on the same chip. The new source will significantly enhance the capabilities of mid-IR multi-heterodyne frequency comb spectroscopy systems.

5.
Opt Lett ; 41(23): 5559-5562, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27906238

RESUMO

We report on the stabilization of a high-power distributed feedback (DFB) semiconductor laser operating at 2.05 µm wavelength, using a crystalline whispering gallery mode microresonator. The laser's frequency noise is measured to be below 100 Hz/Hz1/2 at Fourier frequencies ranging from 10 Hz to 1 MHz. The instantaneous linewidth of the laser is improved by four orders of magnitude compared with the free-running DFB laser, and is measured to be 15 Hz at 0.1 ms measurement time. The integral linewidth approaches 100 Hz. The stabilized DFB laser is integrated with a polarization maintaining output fiber and an integrated optical isolator.

6.
Opt Express ; 24(13): 14589-95, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27410611

RESUMO

We report continuous-wave operation of single-mode quantum cascade (QC) lasers emitting near 7.4 µm with threshold power consumption below 1 W at temperatures up to 40 °C. The lasers were fabricated with narrow, plasma-etched waveguides and distributed-feedback sidewall gratings clad with sputtered aluminum nitride. In contrast to conventional buried-heterostructure (BH) devices with epitaxial sidewall cladding and in-plane gratings, the devices described here were fabricated without any epitaxial regrowth processes, yet they exhibit power consumption comparable to the lowest-dissipation BH QC lasers reported to date. These low-dissipation devices are designed primarily as light sources for infrared spectroscopy instruments with limited volume, mass, and power budgets.

7.
Opt Express ; 23(3): 2446-50, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836112

RESUMO

For high-sensitivity absorption spectroscopy, single-mode light sources capable of emitting high optical output power in the 3 to 5 µm wavelength range are vital. Here, we report on interband cascade lasers that emit 20 mW of optical power in a single spectral mode at room temperature and up to 40 mW at 0 °C using second-order laterally coupled Bragg gratings for distributed feedback. The lasers employ a double-ridge design with a narrow 3-µm-wide top ridge to confine the optical mode and a 9-µm-wide ridge for current confinement. The lasers were developed for an integrated cavity output spectroscopy instrument for stratospheric detection of hydrogen chloride at a wavelength of 3.3746 µm and emit at the target wavelength with more than 34 mW of single-mode power.

8.
Opt Express ; 21(1): 1317-23, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23389025

RESUMO

We demonstrate index-coupled distributed-feedback diode lasers at 2.65 µm that are capable of tuning across strong absorption lines of HDO and other isotopologues of H2O. The lasers employ InGaAsSb/AlInGaAsSb multi-quantum-well structures grown by molecular beam epitaxy on GaSb, and single-mode emission is generated using laterally coupled second-order Bragg gratings etched alongside narrow ridge waveguides. We verify near-critical coupling of the gratings by analyzing the modal characteristics of lasers of different length. With an emission facet anti-reflection coating, 2-mm-long lasers exhibit a typical current threshold of 150 mA at 20 °C and are capable of emitting more than 25 mW in a single longitudinal mode, which is significantly higher than the output power reported for loss-coupled distributed-feedback lasers operating at similar wavelengths.

9.
J Chem Phys ; 129(18): 184506, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-19045413

RESUMO

Absorption of high power laser radiation by colloidal suspensions or solutions containing photoreactive chemicals can result in bubble production. Here, transient grating experiments are reported where picosecond and nanosecond lasers are used to initiate photoinduced processes that lead to bubble formation. Irradiation of colloidal Pt suspensions is found to produce water vapor bubbles that condense back to liquid on a nanosecond time scale. Laser irradiation of Pt suspensions supersaturated with CO(2) liberates dissolved gas to produce bubbles at the sites of the colloidal particles. Laser induced chemical reactions that produce bubbles are found in suspensions of particulate C in water, and in the sensitized decarboxylation of oxalic acid. Theory based on linear acoustics as well as the Rayleigh-Plesset equation is given for description of the bubble motion.

10.
J Chem Phys ; 124(3): 034905, 2006 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-16438612

RESUMO

Expressions for the time dependence of the state variables in a transient grating experiment carried out on suspensions of particles can be determined by integration over space of the solutions for the temperature and photoacoustic pressure for a single particle. The method relies on independent computation of the thermal and acoustic modes of wave motion which are combined to give the temperature, pressure, and density in the grating as a function of time. Calculations are given for the uniformly irradiated droplet and the point source, the latter including the effects of a temperature-dependent thermal expansion coefficient. Transient grating experiments are reported in colloidal Pt that show features described in the calculation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...