Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37959872

RESUMO

BACKGROUND: Antimicrobial resistance is one of the most pressing health issues of our time. The increase in the number of antibiotic-resistant bacteria allied to the lack of new antibiotics has contributed to the current crisis. It has been predicted that if this situation is not dealt with, we will be facing 10 million deaths due to multidrug resistant infections per year by 2050, surpassing cancer-related deaths. This alarming scenario has refocused attention into researching alternative drugs to treat multidrug-resistant infections. AIMS: In this study, the antimicrobial activities of four manganese complexes containing 1,2,3,-triazole and clotrimazole ligands have been evaluated. It is known that azole antibiotics coordinated to manganese tricarbonyl complexes display interesting antimicrobial activities against several microbes. In this work, the effect of the introduction of 1,2,3,-triazole-derived ligands in the [Mn(CO)3(clotrimazole)] fragment has been investigated against one Gram-positive bacterium and five Gram-negative bacteria. METHODS: The initial antimicrobial activity of the above-mentioned complexes was assessed by determining the minimum inhibitory and bactericidal concentrations using the broth microdilution method. Growth curves in the presence and absence of the complexes were performed to determine the effects of these complexes on the growth of the selected bacteria. A possible impact on cellular viability was determined by conducting the MTS assay on human monocytes. RESULTS: Three of the Mn complexes investigated (4-6) had good antimicrobial activities against all the bacteria tested, with values ranging from 1.79 to 61.95 µM with minimal toxicity. CONCLUSIONS: Due to the increased problem of antibiotic resistance and a lack of new antibacterial drugs with no toxicity, these results are exciting and show that these types of complexes can be an avenue to pursue in the future.


Assuntos
Manganês , Triazóis , Humanos , Triazóis/farmacologia , Manganês/farmacologia , Clotrimazol/farmacologia , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias , Testes de Sensibilidade Microbiana
2.
ACS Bio Med Chem Au ; 2(4): 419-436, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35996473

RESUMO

Several metal-based carbon monoxide-releasing molecules (CORMs) are active CO donors with established antibacterial activity. Among them, CORM conjugates with azole antibiotics of type [Mn(CO)3(2,2'-bipyridyl)(azole)]+ display important synergies against several microbes. We carried out a structure-activity relationship study based upon the lead structure of [Mn(CO)3(Bpy)(Ctz)]+ by producing clotrimazole (Ctz) conjugates with varying metal and ligands. We concluded that the nature of the bidentate ligand strongly influences the bactericidal activity, with the substitution of bipyridyl by small bicyclic ligands leading to highly active clotrimazole conjugates. On the contrary, the metal did not influence the activity. We found that conjugate [Re(CO)3(Bpy)(Ctz)]+ is more than the sum of its parts: while precursor [Re(CO)3(Bpy)Br] has no antibacterial activity and clotrimazole shows only moderate minimal inhibitory concentrations, the potency of [Re(CO)3(Bpy)(Ctz)]+ is one order of magnitude higher than that of clotrimazole, and the spectrum of bacterial target species includes Gram-positive and Gram-negative bacteria. The addition of [Re(CO)3(Bpy)(Ctz)]+ to Staphylococcus aureus causes a general impact on the membrane topology, has inhibitory effects on peptidoglycan biosynthesis, and affects energy functions. The mechanism of action of this kind of CORM conjugates involves a sequence of events initiated by membrane insertion, followed by membrane disorganization, inhibition of peptidoglycan synthesis, CO release, and break down of the membrane potential. These results suggest that conjugation of CORMs to known antibiotics may produce useful structures with synergistic effects that increase the conjugate's activity relative to that of the antibiotic alone.

3.
J Biol Inorg Chem ; 27(1): 49-64, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34713347

RESUMO

The antiproliferative activity of [Mn(CO)3(N^N)Br] (N^N = phendione 1, bipy 3) and of the two newly synthesized Mn complexes [Mn(CO)3(acridine)(phendione)]OTf (2) and [Mn(CO)3(di-triazole)Br] (4) has been evaluated by MTS against three tumor cell lines A2780 (ovarian carcinoma), HCT116 (colorectal carcinoma), HCT116doxR (colorectal carcinoma resistant to doxorubicin), and in human dermal fibroblasts. The antiproliferative assay showed a dose-dependent effect higher in complex 1 and 2 with a selectivity toward ovarian carcinoma cell line 21 times higher than in human fibroblasts. Exposure of A2780 cells to IC50 concentrations of complex 1 and 2 led to an increase of reactive oxygen species that led to the activation of cell death mechanisms, namely via intrinsic apoptosis for 2 and autophagy and extrinsic apoptosis for 1. Both complexes do not target DNA or interfere with cell cycle progression but are able to potentiate cell migration and neovascularization (for 2) an indicative that their application might be directed for initial tumor stages to avoid tumor invasion and metastization and opening a new avenue for complex 2 application in regenerative medicine. Interestingly, both complexes do not show toxicity in both in vivo models (CAM and zebrafish).


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias Ovarianas , Animais , Antineoplásicos/química , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Complexos de Coordenação/química , Feminino , Humanos , Manganês , Neoplasias Ovarianas/patologia , Peixe-Zebra
4.
Molecules ; 26(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34770734

RESUMO

A series of new fac-[Mn(L)(CO)3Br] complexes where L is a bidentate chelating ligand containing mixed mesoionic triazolylidene-pyridine (MIC^py, 1), triazolylidene-triazole (MIC^trz, 2), and triazole-pyridine (trz^py, 3) ligands have been prepared and fully characterized, including the single crystal X-ray diffraction studies of 1 and 2. The abilities of 1-3 and complex fac-[Mn(MIC^MIC)(CO)3Br] (4) to catalyze the electroreduction of CO2 has been assessed for the first time. It was found that all complexes displayed a current increase under CO2 atmosphere, being 3 and 4 the most active complexes. Complex 3, bearing a N^N-based ligand exhibited a good efficiency and an excellent selectivity for reducing CO2 to CO in the presence of 1.0 M of water, at low overpotential. Interestingly, complex 4 containing the strongly electron donating di-imidazolylidene ligand exhibited comparable activity to 3, when the experiments were performed in neat acetonitrile at slightly higher overpotential (-1.86 vs. -2.14 V).

5.
Dalton Trans ; 50(17): 5911-5920, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33949500

RESUMO

New manganese complexes bearing di-triazolylidene (di-trz) ligands are described. Depending on the wingtip substituents of the triazolylidene ligand and the synthetic procedure, two different ligand coordination modes were observed, i.e, bridging and chelating. A series of Mn(i) complexes of the general type fac-[Mn(di-trzR)(CO)3Br] (R = Me, Et, Mes) with a chelating di-trz ligand were prepared via Ag-transmetalation. In contrast, the in situ deprotonation of the triazolium salts with KOBut yielded the bimetallic Mn(0) complexes [Mn2(CO)8(µ-di-trzR)] with a bridging di-trz ligand when short alkyl chains (Me, Et, i-Pr) are present as the N1 substituents of the triazolylidene ligand. The molecular structures of monometallic and bimetallic complexes were determined by X-ray diffraction studies. In addition, the cationic fac-[Mn(di-trzEt)(CO)2(PPh3)2]Br complex, a rare example of a dicarbonyl Mn(i) N-heterocyclic carbene, was obtained when fac-[Mn(di-trzEt)(CO)3Br] was irradiated with visible light in the presence of PPh3. The crystal structure revealed a slightly distorted octahedral geometry around the Mn(i) centre, with the chelating di-triazolylidene ligand situated in trans position to the two CO ligands in the equatorial plane, and the two phosphine ligands occupying the axial positions. Cyclic voltammetry studies show reversible redox processes for the monometallic Mn(i) complexes, and a quasi-reversible EC mechanism for the oxidation of the bimetallic complexes. Infrared spectroelectrochemical studies along with DFT calculations for fac-[Mn(di-trzEt)(CO)3Br] suggest that the observed two consecutive reductions both occur at the metal centre.

6.
Inorg Chem ; 60(11): 8011-8026, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33973771

RESUMO

A new series of half-sandwich ruthenium(II) compounds [(η6-arene)Ru(L)Cl][CF3SO3] bearing 1,2,3-triazole ligands (arene = p-cymene, L = L1 (1); arene = p-cymene, L = L2 (2); arene = benzene, L = L1 (3); arene = benzene, L2 (4); L1 = 2-[1-(p-tolyl)-1H-1,2,3-triazol-4-yl]pyridine and L2 = 1,1'-di-p-tolyl-1H,1'H-4,4'-bi(1,2,3-triazole) have been synthesized and fully characterized by 1H and 13C NMR and IR spectroscopy, mass spectrometry, and elemental analysis. The molecular structures of 1, 2, and 4 have been determined by single-crystal X-ray diffraction. The cytotoxic activity of 1-4 was evaluated using the MTS assay against human tumor cells, namely ovarian carcinoma (A2780), colorectal carcinoma (HCT116), and colorectal carcinoma resistant to doxorubicin (HCT116dox), and against normal primary fibroblasts. Whereas compounds 2 and 4 showed no cytotoxic activity toward tumor cell lines, compounds 1 and 3 were active in A2780, while showing no antiproliferative effect in human normal dermal fibroblasts at the IC50 concentrations of the A2780 cell line. Exposure of ovarian carcinoma cells to IC50 concentrations of compound 1 or 3 led to an accumulation of reactive oxygen species and an increase of apoptotic and autophagic cells. While compound 3 displayed low levels of angiogenesis induction, compound 1 showed an ability to induce cell cycle delay and to interfere with cell migration. When the in vivo toxicity studies using zebrafish and chicken embryos are considered, compounds 1 and 3, which were not lethal, are promising candidates as anticancer agents against ovarian cancer due to their good cytotoxic activity in tumor cells and their low toxicity both in vitro and in vivo.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Rutênio/farmacologia , Triazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Modelos Moleculares , Conformação Molecular , Rutênio/química , Triazóis/química
7.
Bioorg Med Chem ; 25(14): 3803-3814, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28571975

RESUMO

New unsymmetrical aminosquarylium cyanine dyes were synthesized and their potential as photosensitizers evaluated. New dyes, derived from benzothiazole and quinoline, were prepared by nucleophilic substitution of the corresponding O-methylated, the key intermediate that was obtained by methylation with CF3SO3CH3 of the related zwitterionic unsymmetrical dye, with ammonia and methylamine, respectively. All three news dyes herein described displayed intense and narrow bands in the Vis/NIR region (693-714nm) and their singlet oxygen formation quantum yields ranged from 0.03 to 0.05. In vitro toxicity, in Caco-2 and HepG2 cells, indicated that dark toxicity was absent for concentrations up to 5µM (for the less active dye) or up to 1µM (for the two more active dyes). The three dyes present potential as photosensitizers, differing in irradiation conditions and period of incubation in the presence of irradiated dye. The less active dye needs a longer irradiation period to exhibit phototoxicity which is only evident after longer period of contact with cells (24h). However, the remaining two more active dyes produce higher phototoxicity, even at shorter incubation periods (1h), with shorter irradiation time (7min). Although in different extents, these dyes show promising in vitro results as photosensitizers.


Assuntos
Carbocianinas/química , Ciclobutanos/química , Corantes Fluorescentes/síntese química , Fenóis/química , Fármacos Fotossensibilizantes/síntese química , Células CACO-2 , Carbocianinas/síntese química , Carbocianinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Ciclobutanos/síntese química , Ciclobutanos/toxicidade , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Células Hep G2 , Humanos , Luz , Fenóis/síntese química , Fenóis/toxicidade , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Oxigênio Singlete/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...