Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731935

RESUMO

Cancer treatment is greatly challenged by drug resistance, highlighting the need for novel drug discoveries. Here, we investigated novel organoarsenic compounds regarding their resistance-breaking and apoptosis-inducing properties in leukemia and lymphoma. Notably, the compound (2,6-dimethylphenyl)arsonic acid (As2) demonstrated significant inhibition of cell proliferation and induction of apoptosis in leukemia and lymphoma cells while sparing healthy leukocytes. As2 reached half of its maximum activity (AC50) against leukemia cells at around 6.3 µM. Further experiments showed that As2 overcomes multidrug resistance and sensitizes drug-resistant leukemia and lymphoma cell lines to treatments with the common cytostatic drugs vincristine, daunorubicin, and cytarabine at low micromolar concentrations. Mechanistic investigations of As2-mediated apoptosis involving FADD (FAS-associated death domain)-deficient or Smac (second mitochondria-derived activator of caspases)/DIABLO (direct IAP binding protein with low pI)-overexpressing cell lines, western blot analysis of caspase-9 cleavage, and measurements of mitochondrial membrane integrity identified the mitochondrial apoptosis pathway as the main mode of action. Downregulation of XIAP (x-linked inhibitor of apoptosis protein) and apoptosis induction independent of Bcl-2 (B-cell lymphoma 2) and caspase-3 expression levels suggest the activation of additional apoptosis-promoting mechanisms. Due to the selective apoptosis induction, the synergistic effects with common anti-cancer drugs, and the ability to overcome multidrug resistance in vitro, As2 represents a promising candidate for further preclinical investigations with respect to refractory malignancies.


Assuntos
Apoptose , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Leucemia , Linfoma , Mitocôndrias , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Humanos , Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linfoma/tratamento farmacológico , Linfoma/metabolismo , Linfoma/patologia , Leucemia/metabolismo , Leucemia/tratamento farmacológico , Leucemia/patologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citostáticos/farmacologia , Antineoplásicos/farmacologia
2.
Biomed Pharmacother ; 161: 114507, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36958194

RESUMO

Gold complexes could be promising for tumor therapy because of their cytotoxic and cytostatic properties. We present novel gold(I) complexes and clarify whether they also show antitumor activity by studying apoptosis induction in different tumor cell lines in vitro, comparing the compounds on resistant cells and analyzing the mechanism of action. We particularly highlight one gold complex that shows cytostatic and cytotoxic effects on leukemia and lymphoma cells already in the nanomolar range, induces apoptosis via the intrinsic signaling pathway, and plays a role in the production of reactive oxygen species. Furthermore, not only did we demonstrate a large number of resistance overcomes on resistant cell lines, but some of these cell lines were significantly more sensitive to the new gold compound. Our results show promising properties for the gold compound as anti-tumor drug and suggest that it can subvert resistance mechanisms and thus targets resistant cells for killing.


Assuntos
Antineoplásicos , Citostáticos , Leucemia , Linfoma , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Citostáticos/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Ouro/farmacologia , Leucemia/patologia , Linfoma/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima , Proteínas Reguladoras de Apoptose/metabolismo
3.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674465

RESUMO

Ruthenium(II) complexes with N-heterocyclic carbene (NHC) ligands have recently attracted attention as novel chemotherapeutic agents. The complex HB324 was intensively studied as an apoptosis-inducing compound in resistant cell lines. HB324 induced apoptosis via mitochondrial pathways. Of particular interest is the upregulation of the Harakiri resistance protein, which inhibits the anti-apoptotic and death repressor proteins Bcl-2 (B-cell lymphoma 2) and BCL-xL (B-cell lymphoma-extra large). Moreover, HB324 showed synergistic activity with various established anticancer drugs and overcame resistance in several cell lines, such as neuroblastoma cells. In conclusion, HB324 showed promising potential as a novel anticancer agent in vitro, suggesting further investigations on this and other preclinical ruthenium drug candidates.


Assuntos
Antineoplásicos , Neuroblastoma , Rutênio , Humanos , Cisplatino/farmacologia , Rutênio/farmacologia , Regulação para Cima , Apoptose , Antineoplásicos/farmacologia , Neuroblastoma/tratamento farmacológico , Linhagem Celular Tumoral
4.
RSC Med Chem ; 13(9): 1044-1051, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36320328

RESUMO

Hexacarbonyl[1,3-dimethoxy-5-((4'-methoxyphenyl)ethynyl)benzene]dicobalt (NAHO27), an organometallic analogue of combretastatin A-4, has been synthesized and its activity against lymphoma, leukemia, breast cancer and melanoma cells has been investigated. It was shown that NAHO27 specifically induces apoptosis in BJAB lymphoma and Nalm-6 leukemia cells at low micromolar concentration and does not affect normal leukocytes in vitro. It also proved to be active against vincristine and daunorubicin resistant leukemia cell lines with p-glycoprotein-caused multidrug resistance and showed a pronounced (550%) synergistic effect when co-applied with vincristine at very low concentrations. Mechanistic investigations revealed NAHO27 to induce apoptosis via the mitochondrial (intrinsic) pathway as reflected by the processing of caspases 3 and 9, the involvement of Bcl-2 and smac/DIABLO, and the reduction of mitochondrial membrane potential. Gene expression analysis and protein expression analysis via western blot showed an upregulation of the proapoptotic protein harakiri by 9%.

5.
Biomed Pharmacother ; 156: 113974, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411649

RESUMO

Tris-(8-quinolinolato)gallium(III) (KP46, AP-002) is an orally administered investigational anticancer and bone-protective drug currently being evaluated in patients with advanced solid tumors with bone involvement. Despite the clinical efficacy of other gallium compounds in non-Hodgkin's lymphoma, effects of KP46 in hematological tumor settings have not been studied systematically before. We report here intriguing activities in various human cell lines, including such with multidrug resistance (MDR): In Nalm-6 lymphoblastic leukemia cell sublines, KP46 was capable of overcoming P-gp-related as well as P-gp-unrelated MDR. Apoptosis induction by KP46 was unaffected by bcl2-mediated vincristine-induced MDR in a BJAB lymphoma cell subline and even enhanced in a K562 leukemia subline with daunorubicin-induced MDR, which could be re-sensitized to daunorubicin by KP46. As the latter resistance is associated with lowered Harakiri (HRK) protein levels, a modulating effect of KP46 on HRK expression is suggested. This is consistent with the significant high upregulation of HRK on RNA and protein levels observed in KP46-treated parental BJAB cells according to qPCR and Western blot analysis, respectively. Furthermore, KP46 significantly reduces the protein level of X-linked inhibitor of apoptosis (XIAP) in BJAB cells, the most potent known inhibitor of apoptosis. Overall, these results indicate both a higher potential of HRK and XIAP as cellular targets for cancer therapy and a broader therapeutic potential of KP46 than hitherto envisaged.


Assuntos
Gálio , Leucemia , Linfoma , Compostos Organometálicos , Humanos , Regulação para Baixo , Regulação para Cima , Gálio/farmacologia , Compostos Organometálicos/farmacologia , Resistência a Múltiplos Medicamentos , Apoptose , Leucemia/tratamento farmacológico , Daunorrubicina/farmacologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
6.
Molecules ; 27(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35956988

RESUMO

Isatis tinctoria and its indigo dyes have already provided highly active anti-leukaemic lead compounds, with the focus mainly being on indirubin, whereas indigo itself is inactive. There are many more indigoids to find in this plant extract, for example, quingdainone, an indigoid derived from tryptanthrin. We present here a new synthesis of hitherto neglected substituted quingdainones, which is very necessary due to their poor solubility behaviour, and a structure-dependent anti-leukaemic activity study of a number of compounds. Substituted α-phenylaminoacrylic acid was synthesised by hydrogen sulfide extrusion from an analogue mercaptoacetic acid, available from the condensation of rhodanin and a substituted tryptanthrin. It is shown that just improving water solubility does not increase anti-leukaemic activity, since a quingdainone carboxylic acid is inactive compared to dihydroxyquingdainone. The most effective compound, dihydroxyquingdainone with an AC50 of 7.5 µmole, is further characterised, revealing its ability to overcome multidrug resistance in leukaemia cells (Nalm-6/BeKa) with p-glycoprotein expression.


Assuntos
Citostáticos , Leucemia , Linfoma , Apoptose , Caspase 3 , Índigo Carmim , Leucemia/tratamento farmacológico , Folhas de Planta
7.
ACS Omega ; 7(3): 2591-2603, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35097257

RESUMO

Colchicine, the main active alkaloid from Colchicum autumnale L., is a potent tubulin binder and represents an interesting lead structure for the development of potential anticancer chemotherapeutics. We report on the synthesis and investigation of potentially reactive colchicinoids and their surprising biological activities. In particular, the previously undescribed colchicinoid PT-100, a B-ring contracted 6-exo-methylene colchicinoid, exhibits extraordinarily high antiproliferative and apoptosis-inducing effects on various types of cancer cell lines like acute lymphoblastic leukemia (Nalm6), acute myeloid leukemia (HL-60), Burkitt-like lymphoma (BJAB), human melanoma (MelHO), and human breast adenocarcinoma (MCF7) cells at low nanomolar concentrations. Apoptosis induction proved to be especially high in multidrug-resistant Nalm6-derived cancer cell lines, while healthy human leukocytes and hepatocytes were not affected by the concentration range studied. Furthermore, caspase-independent initiation of apoptosis via an intrinsic pathway was observed. PT-100 also shows strong synergistic effects in combination with vincristine on BJAB and Nalm6 cells. Cocrystallization of PT-100 with tubulin dimers revealed its (noncovalent) binding to the colchicine-binding site of ß-tubulin at the interface to the α-subunit. A pronounced effect of PT-100 on the cytoskeleton morphology was shown by fluorescence microscopy. While the reactivity of PT-100 as a weak Michael acceptor toward thiols was chemically proven, it remains unclear whether this contributes to the remarkable biological properties of this unusual colchicinoid.

8.
J Med Chem ; 64(21): 15747-15757, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34670090

RESUMO

The synthesis and antiproliferative activity of Mes- and iPr-substituted gold(I) bis(1,2,3-triazol-5-ylidene) complexes in various cancer cell lines are reported, showing nanomolar IC50 values of 50 nM (lymphoma cells) and 500 nM (leukemia cells), respectively (Mes < iPr). The compounds exclusively induce apoptosis (50 nM to 5 µM) instead of necrosis in common malignant blood cells (leukemia cells) and do not affect non-malignant leucocytes. Remarkably, the complexes not only overcome resistances against the well-established cytostatic etoposide, cytarabine, daunorubicin, and cisplatin but also promote a synergistic effect of up to 182% when used with daunorubicin. The present results demonstrate that gold(I) bis(1,2,3-triazol-5-ylidene) complexes are highly promising and easily modifiable anticancer metallodrugs.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Ouro/química , Triazóis/química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/química , Daunorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Humanos
9.
J Cancer Res Clin Oncol ; 147(9): 2591-2607, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34213662

RESUMO

PURPOSE: Since the discovery of the well-known cis-platin, transition metal complexes are highly recognized as cytostatic agents. However, toxic side effects of the metal ions present in the complexes may pose significant problems for their future development. Therefore, we investigated the metal-free salalen ligand WQF 044. METHODS: DNA fragmentations in leukemia (Nalm6) and solid tumor cells (BJAB, MelHO, MCF-7, RM82) proved the apoptotic effects of WQF 044, its overcoming of resistances and the cellular pathways that are affected by the substance. The apoptotic mechanisms finding were supported by western blot analysis, measurement of the mitochondrial membrane potential and polymerase chain reactions. RESULTS: A complex intervention in the mitochondrial pathway of apoptosis with a Bcl-2 and caspase dependence was observed. Additionally, a wide range of tumors were affected by the ligand in a low micromolar range in-vitro. The compound overcame multidrug resistances in P-gp over-expressed acute lymphoblastic leukemia and CD95-downregulated Ewing's sarcoma cells. Quite remarkable synergistic effects with vincristine were observed in Burkitt-like lymphoma cells. CONCLUSION: The investigation of a metal-free salalen ligand as a potential anti-cancer drug revealed in promising results for a future clinical use.


Assuntos
Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Leucemia/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Apoptose , Proliferação de Células , Cisplatino/farmacologia , Humanos , Leucemia/metabolismo , Leucemia/patologia , Ligantes , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Células Tumorais Cultivadas
10.
J Cancer Res Clin Oncol ; 144(4): 685-695, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29374786

RESUMO

PURPOSE: We report on our preclinical findings of a simple salicylic diamine compound (THG 1213) which has yielded exceptional results as a potential chemotherapeutic drug. THG 1213 is an easy to synthesize chiral and metal-free salan compound. METHODS: THG 1213 was tested on several leukemia, lymphoma and solid tumor cell lines in vitro. The effects have been studied by LDH release essay, FACS flow cytometry, photometric cell count, immunoblotting, and NMR spectroscopy. RESULTS: THG 1213 selectively inhibits proliferation and induces apoptosis in leukemia, lymphoma and solid tumor cell lines. Necrosis or effects on healthy leucocytes could not be detected. Apoptosis is induced via the intrinsic and extrinsic pathways. The salan THG 1213 overcomes multidrug resistance in tumor cells and acts synergistically with vincristine and daunorubicin. CONCLUSIONS: THG 1213 displays remarkable antitumor properties. In particular, the lack of metallic components of THG 1213 could prove to be beneficial in future clinical trials, as metal-containing drugs are known to show severe side effects.


Assuntos
Leucemia/tratamento farmacológico , Linfoma/tratamento farmacológico , Fenilenodiaminas/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Daunorrubicina/administração & dosagem , Daunorrubicina/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Humanos , Leucemia/patologia , Linfoma/patologia , Neoplasias/tratamento farmacológico , Fenilenodiaminas/administração & dosagem , Salicilatos/administração & dosagem , Salicilatos/farmacologia , Vincristina/administração & dosagem , Vincristina/farmacologia
11.
ChemMedChem ; 12(3): 214-225, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-27997743

RESUMO

Naphthalimide-based N-heterocyclic carbene (NHC) complexes of the type [(1,5-cyclooctadiene)(NHC)RhCl)] (4 a-c), [(p-cymene)(NHC)RuCl2 )] (5 a-c), and [(NHC)CuBr] (6 a-c) were synthesized and investigated as antiproliferative agents that target DNA. The cytotoxic effects were largely driven by the naphthalimide structure, which is a DNA-intercalating moiety. Regarding the metal center, the highest activities were observed with the rhodium complexes, and cytotoxic activity was significantly lower for the ruthenium derivatives. The stable coordination of the NHC ligands of selected complexes 4 b and 5 b in solution was confirmed, and their DNA binding properties were studied by UV/Vis spectroscopy, mass spectrometry, and circular dichroism. Stable intercalative binding into the DNA for all selected naphthalimide-based complexes is indicated by high DNA binding constants. Particularly efficient binding was observed in the case of the rhodium complex 4 b. More detailed biological studies on 4 b showed promising activities against multidrug-resistant Nalm-6 cells and confirmed an important role for mitochondrial pathways in 4 b-induced apoptosis.


Assuntos
Complexos de Coordenação/química , DNA/química , Substâncias Intercalantes/química , Metano/análogos & derivados , Naftalimidas/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dicroísmo Circular , Complexos de Coordenação/síntese química , Complexos de Coordenação/toxicidade , Cristalografia por Raios X , Cimenos , DNA/metabolismo , Estabilidade de Medicamentos , Células HT29 , Humanos , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/toxicidade , Ligantes , Células MCF-7 , Metano/química , Conformação Molecular , Monoterpenos/química , Ródio/química , Rutênio/química , Espectrofotometria Ultravioleta
12.
Mol Cancer ; 14: 114, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26041471

RESUMO

BACKGROUND: Redox stress is a hallmark of the rewired metabolic phenotype of cancer. The underlying dysregulation of reactive oxygen species (ROS) is interconnected with abnormal mitochondrial biogenesis and function. In chronic lymphocytic leukemia (CLL), elevated ROS are implicated in clonal outgrowth and drug resistance. The pro-survival oncogene T-cell leukemia 1 (TCL1) is causally linked to the high threshold towards classical apoptosis in CLL. We investigated how aberrant redox characteristics and bioenergetics of CLL are impacted by TCL1 and if this is therapeutically exploitable. METHODS: Bio-organometallic chemistry provided compounds containing a cytosine nucleobase, a metal core (ferrocene, ruthenocene, Fe(CO)3), and a 5'-CH2O-TDS substituent. Four of these metal-containing nucleoside analogues (MCNA) were tested for their efficacy and mode of action in CLL patient samples, gene-targeted cell lines, and murine TCL1-transgenic splenocytes. RESULTS: The MCNA showed a marked and selective cytotoxicity towards CLL cells. MCNA activity was equally observed in high-risk disease groups, including those of del11q/del17p cytogenetics and of clinical fludarabine resistance. They overcame protective stromal cell interactions. MCNA-evoked PARP-mediated cell death was non-autophagic and non-necrotic as well as caspase- and P53-independent. This unconventional apoptosis involved early increases of ROS, which proved indispensible based on mitigation of MCNA-triggered death by various scavengers. MCNA exposure reduced mitochondrial respiration (oxygen consumption rate; OCR) and induced a rapid membrane depolarization (∆ΨM). These characteristics distinguished the MCNA from the alkylator bendamustine and from fludarabine. Higher cellular ROS and increased MCNA sensitivity were linked to TCL1 expression. The presence of TCL1 promoted a mitochondrial release of in part caspase-independent apoptotic factors (AIF, Smac, Cytochrome-c) in response to MCNA. Although basal mitochondrial respiration (OCR) and maximal respiratory capacity were not affected by TCL1 overexpression, it mediated a reduced aerobic glycolysis (lactate production) and a higher fraction of oxygen consumption coupled to ATP-synthesis. CONCLUSIONS: Redox-active substances such as organometallic nucleosides can confer specific cytotoxicity to ROS-stressed cancer cells. Their P53- and caspase-independent induction of non-classical apoptosis implicates that redox-based strategies can overcome resistance to conventional apoptotic triggers. The high TCL1-oncogenic burden of aggressive CLL cells instructs their particular dependence on mitochondrial energetic flux and renders them more susceptible towards agents interfering in mitochondrial homeostasis.


Assuntos
Leucemia Linfocítica Crônica de Células B/patologia , Mitocôndrias/metabolismo , Nucleosídeos/farmacologia , Oncogenes , Compostos Organometálicos/farmacologia , Proteínas Proto-Oncogênicas/genética , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Metabolismo Energético/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Necrose , Nucleosídeos/química , Compostos Organometálicos/química , Fatores de Risco , Células Estromais/efeitos dos fármacos , Células Estromais/patologia , Proteína Supressora de Tumor p53/metabolismo
13.
Dalton Trans ; 44(3): 1161-9, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25413270

RESUMO

Gold(i) complexes with phosphane and thiotetrazolate ligands were prepared and investigated as a new type of bioactive gold metallodrugs. The complexes triggered very efficient inhibition of the enzyme thioredoxin reductase (TrxR), which is an important molecular target for gold species. Strong cytotoxic effects were observed in MDA-MB-231 breast adenocarcinoma and HT-29 colon carcinoma cells, and the complexes also caused strong effects in vincristine resistant Nalm-6 leukemia cells. Cellular uptake studies showed elevated cellular gold levels for complexes containing a triphenylphosphane ligand, whereas trifurylphosphane analogues accumulated at significantly lower cellular concentrations.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Inibidores Enzimáticos/química , Ouro/química , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/toxicidade , Cristalografia por Raios X , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/toxicidade , Células HT29 , Humanos , Conformação Molecular , Fosfinas/química , Tiorredoxina Dissulfeto Redutase/metabolismo
14.
Dalton Trans ; 39(35): 8177-82, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20689887

RESUMO

A strategy for combinatorial parallel coordination chemistry is introduced that provides access to libraries of tris-heteroleptic ruthenium complexes in an economical fashion. Using this method, a library of 560 constitutionally unique, monocationic ruthenium complexes was synthesized, followed by a screening for anticancer activity and resulting in the identification of three hits with promising cytotoxic properties in HeLa cancer cells. A subsequent structure-activity relationship led to the discovery of the surprisingly simple anticancer complex [Ru(tBu(2)bpy)(2)(phox)]PF(6) (complex 1), with tBu(2)bpy = 4,4'-di-tert-buty-2,2'-bipyridine and Hphox = 2-(2'-hydroxyphenyl)oxazoline, displaying an LC(50) value in HeLa cells of 1.3 microM and 0.3 microM after incubation for 24 and 72 h, respectively. Complex 1 also shows remarkable antiproliferative and apoptotic properties at submicromolar concentrations in more clinically relevant Burkitt-like lymphoma cells. A reduction of the mitochondrial membrane potential by 1 indicates the involvement of the intrinsic pathway of programmed cell death. Further investigations reveal that 1 requires caspase-3 for the induction of apoptosis but is insensitive to the proapoptotic and antiapoptotic proteins Smac and Bcl-2, respectively.


Assuntos
Antineoplásicos/química , Apoptose , Complexos de Coordenação/química , Compostos Organometálicos/química , Rutênio/química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Técnicas de Química Combinatória , Complexos de Coordenação/toxicidade , Avaliação Pré-Clínica de Medicamentos , Células HeLa , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Compostos Organometálicos/toxicidade , Relação Estrutura-Atividade
15.
J Med Chem ; 53(16): 6064-70, 2010 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-20669965

RESUMO

In this study, we investigated the anticancer properties of methoxy-substituted nickel(II)(salophene) derivatives. We demonstrated that the most active complex [NiII(3-OMe-salophene)] is not necrotic in Burkitt-like lymphoma cells (BJAB) and human B-cell precursor cells (Nalm-6). [NiII(3-OMe-salophene)] inhibited proliferation and induced apoptosis in a concentration dependent manner, giving evidence for the involvement of CD95 receptor-mediated, extrinsic pathway. Furthermore, [NiII(3-OMe-salophene)] overcame vincristine drug resistance in BJAB and Nalm-6 cells.


Assuntos
Antineoplásicos/síntese química , Complexos de Coordenação/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Proteína de Domínio de Morte Associada a Fas/biossíntese , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Espectroscopia de Ressonância Magnética , Proteínas Mitocondriais/biossíntese , Necrose , Transdução de Sinais , Relação Estrutura-Atividade , Vincristina/farmacologia , Receptor fas/fisiologia
16.
Chembiochem ; 11(11): 1607-13, 2010 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-20575131

RESUMO

Screening of a library of structurally unusual osmacyclic complexes for their antiproliferate properties in HeLa cells led to the discovery of a highly cytotoxic eta2-allene osmacycle. In this remarkably stable complex, osmium constitutes part of a metallacycle through the formation of a sigma-bond to a carbon in combination with coordination to an allene moiety. The osmacycle strongly induces apoptosis in Burkitt-like lymphoma cells at submicromolar concentrations. The reduction of the mitochondrial membrane potential, the induction of DNA fragmentation, and the activation of caspases-9 and -3 reveal that programmed cell death occurs through the intrinsic mitochondrial pathway. From the lipophilic and cationic nature of the osmacycle, in addition to a low oxidation potential (E1/2=+0.27 V vs. Fc/Fc+, Fc=ferrocene) it is proposed that mitochondria are the cellular target where oxidative decomposition initiates apoptosis.


Assuntos
Alcadienos/química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Alcadienos/farmacologia , Antineoplásicos/síntese química , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/patologia , Caspases/metabolismo , Linhagem Celular Tumoral , Fragmentação do DNA , Humanos , Mitocôndrias/metabolismo , Compostos Organometálicos
17.
Dalton Trans ; (48): 10882-8, 2009 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-20023918

RESUMO

In this study, we investigate the anticancer properties of an inert half-sandwich metal complex scaffold. UV melting experiments with duplex DNA and (1)H-NMR experiments with 9-ethylguanine reveal that the apoptotic ruthenium complex DW12 does not interact with DNA. On the other hand, diminishing the kinase inhibition properties of DW12 by methylating the maleimide nitrogen (DW12-Me) abolishes the anticancer activity. Furthermore, the incorporation of a fluorine into the pyridine moiety (NP309) improves the IC(50) value for glycogen synthase kinase 3 (GSK-3) and at the same time the cytotoxicity, implying that the anticancer activity correlates with the inhibition of GSK-3 and maybe other not yet identified kinases. We demonstrate in Burkitt-like lymphoma (BJAB) cells that NP309 is not necrotic but induces apoptosis and that this apoptosis is mediated by a loss of the mitochondrial membrane potential, caspase-9 processing, and is partly dependent on Bcl-2 expression. In addition, NP309 efficiently induces apoptosis in vincristine- and cytarabine-resistant human B-cell precursor cell lines.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Rutênio/química , Antineoplásicos/toxicidade , Apoptose , Caspase 9/metabolismo , Linhagem Celular , Complexos de Coordenação/toxicidade , Quinase 3 da Glicogênio Sintase/metabolismo , Células HCT116 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
18.
Planta Med ; 73(8): 755-61, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17715491

RESUMO

The identification of effective cancer preventive compounds from hops has become an important issue in public health-related research. We compared the antiproliferative and apoptosis-inducing effects of side chain variants of prenylflavanones, e. g., 8-prenylnaringenin (7) and 8-geranylnaringenin (10), which have been identified in hops (Humulus lupulus), and their synthetic variations 8-furanmethylnaringenin (8) and 8-cinnamylnaringenin (9). These were accessible by a Mitsunobu reaction and Claisen rearrangement. Flavanones 9 and 10 showed cytotoxic and apoptotic activities. Apoptosis was induced in a mitochondrial dependent manner. 8-Cinnamylnaringenin (9) displayed noticeably improved apoptotic effects when compared to 8-prenylnaringenin. The potential of 8-prenylnaringenin (7) is shown in an ex vivo experiment on a multi-drug resistant leukaemia blast.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Humulus , Fitoterapia , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/uso terapêutico , Linfoma de Burkitt/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Flavanonas/administração & dosagem , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Humanos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/uso terapêutico
19.
Chem Biodivers ; 2(10): 1331-7, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17191934

RESUMO

Starting from commercially available phloracetophenone (= 1-(2,4,6-trihydroxyphenyl)ethanone), we synthesized demethylxanthohumol (4), a derivative of xanthohumol, devoid of 6'-O-methyl group. Both are prenylchalcones derived from hops (Humulus lupulus). The synthesis was accomplished by an aldol condensation between MOM-protected acetophenone 2 and MOM-protected benzaldehyde 3. The resulting demethylxanthohumol (4) displayed antiproliferative properties. Demethylxanthohumol (4) induced also apoptosis via the mitochondrial pathway in BJAB cells (Burkitt lymphoma cell line) and in primary lymphoblasts of childhood acute lymphoblastic leukemia (ALL).


Assuntos
Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Humulus/química , Propiofenonas/química , Propiofenonas/farmacologia , Linhagem Celular Tumoral , Humanos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...