Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(22): e114, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37941142

RESUMO

Linked-read sequencing promises a one-method approach for genome-wide insights including single nucleotide variants (SNVs), structural variants, and haplotyping. We introduce Barcode Linked Reads (BLR), an open-source haplotyping pipeline capable of handling millions of barcodes and data from multiple linked-read technologies including DBS, 10× Genomics, TELL-seq and stLFR. Running BLR on DBS linked-reads yielded megabase-scale phasing with low (<0.2%) switch error rates. Of 13616 protein-coding genes phased in the GIAB benchmark set (v4.2.1), 98.6% matched the BLR phasing. In addition, large structural variants showed concordance with HPRC-HG002 reference assembly calls. Compared to diploid assembly with PacBio HiFi reads, BLR phasing was more continuous when considering switch errors. We further show that integrating long reads at low coverage (∼10×) can improve phasing contiguity and reduce switch errors in tandem repeats. When compared to Long Ranger on 10× Genomics data, BLR showed an increase in phase block N50 with low switch-error rates. For TELL-Seq and stLFR linked reads, BLR generated longer or similar phase block lengths and low switch error rates compared to results presented in the original publications. In conclusion, BLR provides a flexible workflow for comprehensive haplotype analysis of linked reads from multiple platforms.


Assuntos
Genoma Humano , Genômica , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
2.
Sci Rep ; 9(1): 18116, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792271

RESUMO

The future of human genomics is one that seeks to resolve the entirety of genetic variation through sequencing. The prospect of utilizing genomics for medical purposes require cost-efficient and accurate base calling, long-range haplotyping capability, and reliable calling of structural variants. Short-read sequencing has lead the development towards such a future but has struggled to meet the latter two of these needs. To address this limitation, we developed a technology that preserves the molecular origin of short sequencing reads, with an insignificant increase to sequencing costs. We demonstrate a novel library preparation method for high throughput barcoding of short reads where millions of random barcodes can be used to reconstruct megabase-scale phase blocks.


Assuntos
Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Código de Barras de DNA Taxonômico , Visualização de Dados , Biblioteca Gênica , Genoma Humano , Haplótipos , Humanos
3.
Bioconjug Chem ; 30(11): 2790-2798, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31609586

RESUMO

Antibody-DNA conjugates are powerful tools for DNA-assisted protein analysis. Growing usage of these methods demands efficient production of high-quality conjugates. We developed an easy and fast synthesis route yielding covalent antibody-DNA conjugates with a defined conjugation site and low batch-to-batch variability. We utilize the Z domain from protein A, containing the unnatural amino acid 4-benzoylphenylalanine (BPA) for photoaffinity labeling of the antibodies' Fc region. Z(xBPA) domains are C-terminally modified with triple-glycine (G3)-modified DNA-oligonucleotides via enzymatic Sortase A coupling. We show reliable modification of the most commonly used IgG's. To prove our conjugates' functionality, we detected antibody-antigen binding events in an assay called Droplet Barcode Sequencing for Protein analysis (DBS-Pro). It confirms not only retained functionality for both conjugate parts but also the potential of using DBS-Pro for quantifying protein abundances. As intermediates are easily storable and our approach is modular, it offers a convenient strategy for screening various antibody-DNA conjugates using the same starting material.


Assuntos
Anticorpos Monoclonais/química , DNA/química , Imunoconjugados/química , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Fenilalanina/análogos & derivados , Marcadores de Fotoafinidade/química , Aminoaciltransferases/imunologia , Aminoaciltransferases/metabolismo , Anticorpos Monoclonais/imunologia , Reações Antígeno-Anticorpo/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/imunologia , Cisteína Endopeptidases/metabolismo , DNA/imunologia , Humanos , Imunoconjugados/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Fenilalanina/química
4.
Naturwissenschaften ; 90(7): 327-31, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12883777

RESUMO

Two strains of microorganisms that both use sugar as energy resource, but which may choose between two different pathways of ATP production, are studied from a game-theory point of view. We consider these pathways as distinct strategies to which we assign payoffs that are proportional to the expected steady-state number of individuals sustainable on the basis of these strategies. In a certain parameter range, we find that the payoffs fulfil the conditions for the prisoner's dilemma. Therefore, cooperative behaviour is unlikely to occur, unless additional factors intervene. In fact, the yeast Saccharomyces cerevisiae uses a competitive strategy by fermenting sugars even under aerobic conditions, thus wasting its own resource. The simple quantifiable structure of the model should enable access to an experimentally determined payoff matrix.


Assuntos
Trifosfato de Adenosina/metabolismo , Bioquímica/métodos , Teoria dos Jogos , Modelos Biológicos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...