Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Investig Clin Urol ; 65(4): 400-410, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38978220

RESUMO

PURPOSE: To determine whether the overexpression of the Argonaute RNA-induced silencing complex catalytic component 2 (Ago2) improves erectile function in mice after cavernous nerve injury (CNI). MATERIALS AND METHODS: Lentiviruses containing Ago2 open reading frame (ORF) mouse clone (Ago2 O/E) were used to overexpress Ago2, and lentiviruses ORF negative control particles (NC) were used as a negative control. Three days before preparing the CNI model, we injected lentiviruses into the penises of 8-week-old male C57BL/6 mice. Animals were then divided into four groups: the sham operation control group and the CNI+phosphate-buffered saline, CNI+NC, and CNI+Ago2 O/E groups. One week later, erectile function was assessed by electrically stimulating cavernous nerves bilaterally and obtaining intracavernous pressure parameters. Penile tissue was also collected for molecular mechanism studies. RESULTS: Ago2 overexpression improved erectile function in mice after CNI-induced erectile dysfunction (ED). Immunofluorescence staining and Western blot analysis showed that under Ago2 overexpressing conditions, the contents of endothelial cells, pericytes, and neuronal cells increased in the penile tissues of CNI mice, and this was attributed to reduced apoptosis and ROS production. In addition, we also found that Ago2 overexpression could restore penile mitochondrial function, thereby improving erectile function in CNI-induced ED mice. CONCLUSIONS: Our findings demonstrate that Ago2 overexpression can reduce penile cell apoptosis, restore penile mitochondrial function, and improve erectile function in CNI-induced ED mice.


Assuntos
Apoptose , Proteínas Argonautas , Modelos Animais de Doenças , Disfunção Erétil , Camundongos Endogâmicos C57BL , Mitocôndrias , Ereção Peniana , Pênis , Animais , Masculino , Pênis/inervação , Disfunção Erétil/etiologia , Camundongos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Mitocôndrias/metabolismo , Ereção Peniana/fisiologia , Traumatismos dos Nervos Periféricos/complicações
2.
J Sex Med ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033084

RESUMO

BACKGROUND: Heparin-binding epidermal growth factor-like growth factor (HB-EGF) serves as a pro-angiogenic factor; however, there is to our knowledge currently no reported research on the relationship between HB-EGF and diabetic erectile dysfunction (ED). AIM: In this study we aimed to determine whether HB-EGF can improve the erectile function of streptozotocin-induced diabetic mice and to explore the related mechanisms. METHODS: Eight-week-old male C57BL/6 mice were used for diabetes induction. Diabetes mellitus (DM) was induced by low-dose injections of streptozotocin (50 mg/kg) for 5 consecutive days. Eight weeks after streptozotocin injections, DM was determined by measuring blood glucose and body weight. Diabetic mice were treated with two intracavernous administrations of phosphate-buffered saline (20 µL) or various doses of HB-EGF (days -3 and 0; 1, 5, and 10 µg in 20 µL of phosphate-buffered saline). The angiogenesis effect of HB-EGF was confirmed by tube formation and migration assays in mouse cavernous endothelial cells and mouse cavernous pericytes under high-glucose conditions. Erectile function was measured by electrical stimulation of the cavernous nerve, as well as histological examination and Western blot analysis for mechanism assessment. OUTCOMES: In vitro angiogenesis, cell proliferation, in vivo intracavernous pressure, neurovascular regeneration, cavernous permeability, and survival signaling were the outcomes measured. RESULTS: Expression of HB-EGF was reduced under diabetic conditions. Exogenous HB-EGF induced angiogenesis in mouse cavernous endothelial cells and mouse cavernous pericytes under high-glucose conditions. Erectile function was decreased in the DM group, whereas administration of HB-EGF resulted in a significant improvement of erectile function (91% of the age-matched control group) in association with increased neurovascular content, including cavernous endothelial cells, pericytes, and neuronal cells. Histological and Western blot analyses revealed a significant increase in the permeability of the corpus cavernosum in DM mice, which was attenuated by HB-EGF treatment. The protein expression of phospho-Akt Ser473 and phosphorylated endothelial nitric oxide synthase Ser1177 increased after HB-EGF treatment. CLINICAL IMPLICATIONS: The use of HB-EGF may be an effective strategy to treat ED associated with DM or other neurovascular diseases. STRENGTHS AND LIMITATIONS: Similarly to other pro-angiogenic factors, HB-EGF has dual roles in vascular and neuronal development. Our study focused on broadly evaluating the role of HB-EGF in diabetic ED. In view of the properties of HB-EGF as an angiogenic factor, its dose concentration should be strictly controlled to avoid potential side effects. CONCLUSION: In the diabetic ED mouse model in this study erectile function was improved by HB-EGF, which may provide new treatment strategies for patients with ED who do not respond to phosphodiesterase 5 Inhibitors.

4.
BMC Urol ; 23(1): 209, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104056

RESUMO

BACKGROUND: To investigate the regulatory role of microRNA (miR)-148a-3p in mouse corpus cavernous pericyte (MCPs)-derived extracellular vesicles (EVs) in the treatment of diabetes-induced erectile dysfunction (ED). METHODS: Mouse corpus cavernous tissue was used for MCP primary culture and EV isolation. Small-RNA sequencing analysis was performed to assess the type and content of miRs in MCPs-EVs. Four groups of mice were used: control nondiabetic mice and streptozotocin-induced diabetic mice receiving two intracavernous injections (days - 3 and 0) of phosphate buffered saline, MCPs-EVs transfected with reagent control, or MCPs-EVs transfected with a miR-148a-3p inhibitor. miR-148a-3p function in MCPs-EVs was evaluated by tube-formation assay, migration assay, TUNEL assay, intracavernous pressure, immunofluorescence staining, and Western blotting. RESULTS: We extracted EVs from MCPs, and small-RNA sequencing analysis showed miR-148a-3p enrichment in MCPs-EVs. Exogenous MCPs-EV administration effectively promoted mouse cavernous endothelial cell (MCECs) tube formation, migration, and proliferation, and reduced MCECs apoptosis under high-glucose conditions. These effects were significantly attenuated in miR-148a-3p-depleted MCPs-EVs, which were extracted after inhibiting miR-148a-3p expression in MCPs. Repetitive intracavernous injections of MCPs-EVs improved erectile function by inducing cavernous neurovascular regeneration in diabetic mice. Using online bioinformatics databases and luciferase report assays, we predicted that pyruvate dehydrogenase kinase-4 (PDK4) is a potential target gene of miR-148a-3p. CONCLUSIONS: Our findings provide new and reliable evidence that miR-148a-3p in MCPs-EVs significantly enhances cavernous neurovascular regeneration by inhibiting PDK4 expression in diabetic mice.


Assuntos
Diabetes Mellitus Experimental , Disfunção Erétil , Vesículas Extracelulares , MicroRNAs , Animais , Humanos , Masculino , Camundongos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Células Endoteliais , Disfunção Erétil/etiologia , Disfunção Erétil/terapia , MicroRNAs/genética , Pericitos , Regeneração
5.
Int J Biol Sci ; 19(9): 2663-2677, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324943

RESUMO

As a peripheral nerve injury disease, cavernous nerve injury (CNI) caused by prostate cancer surgery and other pelvic surgery causes organic damage to cavernous blood vessels and nerves, thereby significantly attenuating the response to phosphodiesterase-5 inhibitors. Here, we investigated the role of heme-binding protein 1 (Hebp1) in erectile function using a mouse model of bilateral CNI, which is known to promote angiogenesis and improve erection in diabetic mice. We found a potent neurovascular regenerative effect of Hebp1 in CNI mice, demonstrating that exogenously delivered Hebp1 improved erectile function by promoting the survival of cavernous endothelial-mural cells and neurons. We further found that endogenous Hebp1 delivered by mouse cavernous pericyte (MCP)-derived extracellular vesicles promoted neurovascular regeneration in CNI mice. Moreover, Hebp1 achieved these effects by reducing vascular permeability through regulation of claudin family proteins. Our findings provide new insights into Hebp1 as a neurovascular regeneration factor and demonstrate its potential therapeutic application to various peripheral nerve injuries.


Assuntos
Diabetes Mellitus Experimental , Disfunção Erétil , Vesículas Extracelulares , Traumatismos dos Nervos Periféricos , Animais , Humanos , Masculino , Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/etiologia , Vesículas Extracelulares/metabolismo , Proteínas Ligantes de Grupo Heme/farmacologia , Regeneração Nervosa , Pênis/irrigação sanguínea , Pênis/inervação , Pênis/cirurgia , Pericitos/metabolismo , Traumatismos dos Nervos Periféricos/terapia
6.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769259

RESUMO

Severe vascular and nerve damage from diabetes is a leading cause of erectile dysfunction (ED) and poor response to oral phosphodiesterase 5 inhibitors. Argonaute 2 (Ago2), a catalytic engine in mammalian RNA interference, is involved in neurovascular regeneration under inflammatory conditions. In the present study, we report that Ago2 administration can effectively improve penile erection by enhancing cavernous endothelial cell angiogenesis and survival under diabetic conditions. We found that although Ago2 is highly expressed around blood vessels and nerves, it is significantly reduced in the penis tissue of diabetic mice. Exogenous administration of the Ago2 protein restored erectile function in diabetic mice by reducing reactive oxygen species production-signaling pathways (inducing eNOS Ser1177/NF-κB Ser536 signaling) and improving cavernous endothelial angiogenesis, migration, and cell survival. Our study provides new evidence that Ago2 mediation may be a promising therapeutic strategy and a new approach for diabetic ED treatment.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Disfunção Erétil , Animais , Humanos , Masculino , Camundongos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/etiologia , Mamíferos/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ereção Peniana , Pênis/irrigação sanguínea , Espécies Reativas de Oxigênio/metabolismo , Estreptozocina/farmacologia
7.
Int Neurourol J ; 26(3): 201-209, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36203252

RESUMO

PURPOSE: To assess functional and structural changes in vascular and neural structures associated with diabetic bladder dysfunction (DBD) in the bladders of streptozotocin (STZ)-induced diabetic mice. METHODS: Eight-week-old C57BL/6 mice were injected with STZ at 50 mg/kg daily for 5 consecutive days. Catheters were inserted 12 weeks later, and 5 days after catheter placement bladder functions were assessed by conscious cystometry. Neurovascular and extracellular matrix marker changes in harvested urinary bladders were investigated by immunofluorescent staining. Body weights and fasting and postprandial blood glucose levels were measured 12 weeks after STZ injection. RESULTS: STZ-induced diabetic mice had significantly lower body weights and significantly higher blood glucose levels. Assessment of bladder function in STZ-induced diabetic mice revealed a nearly 3-fold increase in bladder capacity and intercontractile interval compared to controls. However, basal pressure, maximal bladder pressure, and threshold pressure were not significantly different. Morphological and structural analysis showed that STZ-induced diabetic mice had significantly reduced microvascular density in lamina propria (33% of the nondiabetic control values), and severely decreased nerve contents in the detrusor region (42% of the nondiabetic control values). CONCLUSION: STZ-induced diabetic mice exhibit functional and structural derangements in urinary bladder. The present study provides a foundation and describes a useful means of evaluating the efficacies of therapeutic targets and exploring the detailed mechanism of DBD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...