Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 100(18): 10158-63, 2003 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-12930897

RESUMO

A method for obtaining strongly polarized nuclear spins in solution has been developed. The method uses low temperature, high magnetic field, and dynamic nuclear polarization (DNP) to strongly polarize nuclear spins in the solid state. The solid sample is subsequently dissolved rapidly in a suitable solvent to create a solution of molecules with hyperpolarized nuclear spins. The polarization is performed in a DNP polarizer, consisting of a super-conducting magnet (3.35 T) and a liquid-helium cooled sample space. The sample is irradiated with microwaves at approximately 94 GHz. Subsequent to polarization, the sample is dissolved by an injection system inside the DNP magnet. The dissolution process effectively preserves the nuclear polarization. The resulting hyperpolarized liquid sample can be transferred to a high-resolution NMR spectrometer, where an enhanced NMR signal can be acquired, or it may be used as an agent for in vivo imaging or spectroscopy. In this article we describe the use of the method on aqueous solutions of [13C]urea. Polarizations of 37% for 13C and 7.8% for 15N, respectively, were obtained after the dissolution. These polarizations correspond to an enhancement of 44,400 for 13C and 23,500 for 15N, respectively, compared with thermal equilibrium at 9.4 T and room temperature. The method can be used generally for signal enhancement and reduction of measurement time in liquid-state NMR and opens up for a variety of in vitro and in vivo applications of DNP-enhanced NMR.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Ureia/análise
2.
Magn Reson Med ; 48(2): 223-32, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12210930

RESUMO

A new strategy for a quantitative measurement of regional pulmonary ventilation using hyperpolarized helium-3 (3He) MRI has been developed. The method employs the build-up of the signal intensity after a variable number of (3)He breaths. A mathematical model of the signal dynamics is presented, from which the local ventilation, defined as the fraction of gas exchanged per breath within a given volume, is calculated. The model was used to create ventilation maps of coronal slices of guinea pig lungs. Ventilation values very close to 1 were found in the trachea and the major airways. In the lung parenchyma, regions adjacent to the hilum showed values of 0.6-0.8, whereas 0.2-0.4 was measured in peripheral regions. Monte Carlo simulations were used to investigate the accuracy of the method and its limitations. The simulations revealed that, at presently attainable signal-to-noise ratios, the ventilation parameter can be determined with a relative uncertainty of <5% over a wide range of values.


Assuntos
Imageamento por Ressonância Magnética/métodos , Ventilação Pulmonar , Animais , Cobaias , Hélio , Processamento de Imagem Assistida por Computador , Isótopos , Masculino , Troca Gasosa Pulmonar , Ventilação Pulmonar/fisiologia , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...