Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 33(12): 3028-3039, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28198634

RESUMO

The popularization of studies in membrane protein lipid phase coexistence has prompted the development of new techniques to construct and study biomimetic systems with cholesterol-rich lipid microdomains. Here, microsphere-supported biomembranes with integrated α-helical peptides, referred to as proteolipobeads (PLBs), were used to model peptide/protein partitioning within DOPC/DPPC/cholesterol phase-separated membranes. Due to the appearance of compositional heterogeneity and impurities in the formation of model PLB assemblies, fluorescence-activated cell sorting (FACS) was used to characterize and sort PLB populations on the basis of disordered phase (Ld) content. In addition, spectral imaging was used to assess the partitioning of FITC-labeled α-helical peptide between fluorescently labeled Ld phase and unlabeled ordered phase (Lo) phase lipid microdomains. The apparent peptide partition coefficient, Kp,app, was measured to be 0.89 ± 0.06, indicating a slight preference of the peptide for the Lo phase. A biomimetic motif of the Lo phase concentration enhancement of the biotinyl-peptide ligand display in proteolipobeads was also observed. Finally, peptide mobility was measured by FRAP separately in each lipid phase, yielding diffusivities of 0.036 ± 0.005 and 0.014 ± 0.003 µm2/s in the Ld and Lo phases, respectively.


Assuntos
Materiais Biomiméticos/química , Lipídeos/química , Proteínas de Membrana/química , Microscopia Confocal , Microesferas , Peptídeos/química
2.
Langmuir ; 32(14): 3470-5, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-26972467

RESUMO

Supported lipid bilayers (SLBs) are ideally suited for the study of biomembrane-biomembrane interactions and for the biomimicry of cell-to-cell communication, allowing for surface ligand displays that contain laterally mobile elements. However, the SLB paradigm does not include three-dimensionality and biocompatibility. As a way to bypass these limitations, we have developed a biodegradable form of microsphere SLBs, also known as proteolipobeads (PLBs), using PLGA microspheres. Microspheres were synthesized using solvent evaporation and size selected with fluorescence activated cell sorting (FACS). Biomembranes were covalently tethered upon fusion to microsphere supports via short-chain PEG spacers connecting membrane-integrated α-helical peptides and the microsphere surface, affecting membrane diffusivity and mobility as indicated by confocal FRAP analysis. Membrane heterogeneities, which are attributed to PLGA hydrophobicity and rough surface topography, are curtailed by the addition of PEG tethers. This method allows for the presentation of tethered, laterally mobile biomembranes in three dimensions with functionally embedded attachment peptides for mobile ligand displays.


Assuntos
Plásticos Biodegradáveis/química , Ácido Láctico/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Microesferas , Peptídeos/química , Ácido Poliglicólico/química , Tamanho da Partícula , Fosfatidilcolinas , Polietilenoglicóis/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Estrutura Secundária de Proteína
3.
Langmuir ; 28(5): 2347-56, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22149422

RESUMO

Using rheo-optical techniques, we investigated the impact of interfacial wetting of symmetric diblock copolymers (BCPs) on the coalescence and aggregation of polydimethylsiloxane (PDMS) droplets in immiscible polyethylene-propylene (PEP) homopolymers. Anionic polymerization was used to synthesize well-defined matrix homopolymers and symmetric 16 kg/mol-to-16 kg/mol PDMS-b-PEP diblock copolymers with low polydispersity (PDI ≈ 1.02) as characterized with size exclusion chromatography and nuclear magnetic resonance spectroscopy. Blends were formulated to match the viscosities between the droplets and the matrix. Moreover, molecular weights of these components were varied to ensure that the inner block of the copolymer inside the droplet was collapsed and dry, whereas the outer block of the copolymer outside of the droplet was stretched and wet. Droplet breakup and coalescence as well as interfacial tensions were measured using rheo-optical experiments with Linkam shearing stage and an optical microscope. Subsequent to droplet breakup at high shear rates, we found that the BCPs mitigated shear-induced coalescence at lower shear rates. Based on surface tension measurements, the stretching of the BCP increased in lower molecular weight matrices, causing the droplet surface to saturate at lower coverage in line with theoretical predictions. Droplet aggregation was detected with further reductions in shear rate, which was attributed to the dewetting or the expulsion of the matrix from a saturated brush. Ultimately, the regions of droplet coalescence and aggregation were scaled by balancing the forces of shear with those due to the attraction between BCP-coated droplets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...