Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Pract Cases Emerg Med ; 8(2): 138-142, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38869337

RESUMO

Introduction: Severe metabolic alkaloses are relatively rare but can carry a high mortality rate. Treatment involves supportive care and treatment of underlying causes. Case Report: A 55-year-old male dependent on a gastrojejunostomy tube presented to the emergency department for altered mental status. The patient had metabolic alkalosis, electrolyte abnormalities, and prolonged QT interval on electrocardiogram. Examination and history revealed that chronic drainage of gastric fluid via malfunctioning a gastrojejunostomy tube resulted in profound alkalosis. The patient recovered with supportive care, electrolyte repletion, and gastrojejunostomy tube replacement. Conclusion: This case highlights the importance of gastrointestinal acid-base pathophysiology.

2.
Pol J Radiol ; 88: e423-e429, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808170

RESUMO

Purpose: Left atrial calcification (LAC), a primarily radiologic diagnosis, has been associated with rheumatic heart disease (RHD) and rheumatic fever (RF). However, left atrial calcification continues to be observed despite a significant decrease in the prevalence of rheumatic heart disease. The purpose of this study was to investigate other possible etiologies of left atrial calcification. Material and methods: This retrospective, observational single-center study included patients from 2017 to 2022 identified as having left atrial calcification as well as age- and sex-matched controls. The prevalence of rheumatic heart disease, atrial ablation, and mitral valve disease was compared, and odds ratios were calculated for each independent variable. Results: Sixty-two patients with left atrial calcifications were included and compared with 62 controls. 87.1% of patients in the left atrial calcifications cohort had a history of atrial fibrillation compared with 21% in the control cohort (p < 0.001). 16.1% of patients in the calcifications cohort presented a history of rheumatic fever compared with zero in the control cohort (p = 0.004). 66.1% of the left atrial calcifications cohort had a history of atrial ablation compared with 6.5% of the control group (p < 0.001). The odds ratio for left atrial calcification was 19.0 vs. 4.8 for rheumatic fever (comparative odds = 4.0 for atrial ablation vs. rheumatic fever). Multivariable log model found atrial ablation to explain 79.8% of left atrial calcifications identified. Conclusions: Our study found a 4-fold higher association between history of atrial ablation and left atrial calcification compared with rheumatic heart disease, suggesting a potential shift in etiology.

3.
Mol Biol Cell ; 33(11): ar97, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35704466

RESUMO

A key feature of chromosome segregation is the ability to sense tension between sister kinetochores. DNA between sister kinetochores must be packaged in a way that sustains tension propagation from one kinetochore to its sister, approximately 1 micron away. A molecular bottlebrush consisting of a primary axis populated with a crowded array of side chains provides a means to build tension over length scales considerably larger than the stiffness of the individual elements, that is, DNA polymer. Evidence for the bottlebrush organization of chromatin between sister kinetochores comes from genetic, cell biological, and polymer modeling of the budding yeast centromere. In this study, we have used polymer dynamic simulations of the bottlebrush to recapitulate experimental observations of kinetochore structure. Several aspects of the spatial distribution of kinetochore proteins and their response to perturbation lack a mechanistic understanding. Changes in physical parameters of bottlebrush, DNA stiffness, and DNA loops directly impact the architecture of the inner kinetochore. This study reveals that the bottlebrush is an active participant in building tension between sister kinetochores and proposes a mechanism for chromatin feedback to the kinetochore.


Assuntos
Cinetocoros , Polímeros , Centrômero , Cromatina/metabolismo , Segregação de Cromossomos , DNA/metabolismo , Humanos , Microtúbulos/metabolismo , Polímeros/metabolismo
4.
Mol Cell Biol ; 39(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30718362

RESUMO

The genome is packaged and organized in an ordered, nonrandom manner, and specific chromatin segments contact nuclear substructures to mediate this organization. tRNA genes (tDNAs) are binding sites for transcription factors and architectural proteins and are thought to play an important role in the organization of the genome. In this study, we investigate the roles of tDNAs in genomic organization and chromosome function by editing a chromosome so that it lacked any tDNAs. Surprisingly our analyses of this tDNA-less chromosome show that loss of tDNAs does not grossly affect chromatin architecture or chromosome tethering and mobility. However, loss of tDNAs affects local nucleosome positioning and the binding of SMC proteins at these loci. The absence of tDNAs also leads to changes in centromere clustering and a reduction in the frequency of long-range HML-HMR heterochromatin clustering with concomitant effects on gene silencing. We propose that the tDNAs primarily affect local chromatin structure, which results in effects on long-range chromosome architecture.


Assuntos
Cromatina/metabolismo , Cromatina/ultraestrutura , RNA de Transferência/genética , Sítios de Ligação , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Montagem e Desmontagem da Cromatina , Cromossomos/genética , Cromossomos/metabolismo , Heterocromatina/metabolismo , Heterocromatina/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição TFIII/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(46): 11784-11789, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30373818

RESUMO

De novo kinetochore assembly, but not template-directed assembly, is dependent on COMA, the kinetochore complex engaged in cohesin recruitment. The slowing of replication fork progression by treatment with phleomycin (PHL), hydroxyurea, or deletion of the replication fork protection protein Csm3 can activate de novo kinetochore assembly in COMA mutants. Centromere DNA looping at the site of de novo kinetochore assembly can be detected shortly after exposure to PHL. Using simulations to explore the thermodynamics of DNA loops, we propose that loop formation is disfavored during bidirectional replication fork migration. One function of replication fork stalling upon encounters with DNA damage or other blockades may be to allow time for thermal fluctuations of the DNA chain to explore numerous configurations. Biasing thermodynamics provides a mechanism to facilitate macromolecular assembly, DNA repair, and other nucleic acid transactions at the replication fork. These loop configurations are essential for sister centromere separation and kinetochore assembly in the absence of the COMA complex.


Assuntos
Centrômero/fisiologia , Replicação do DNA/fisiologia , Cinetocoros/fisiologia , Proteínas de Ciclo Celular , Centrômero/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona , DNA/metabolismo , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Cinetocoros/metabolismo , Fleomicinas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Termodinâmica , Coesinas
6.
Mol Biol Cell ; 29(22): 2737-2750, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30207827

RESUMO

SMC (structural maintenance of chromosomes) complexes condensin and cohesin are crucial for proper chromosome organization. Condensin has been reported to be a mechanochemical motor capable of forming chromatin loops, while cohesin passively diffuses along chromatin to tether sister chromatids. In budding yeast, the pericentric region is enriched in both condensin and cohesin. As in higher-eukaryotic chromosomes, condensin is localized to the axial chromatin of the pericentric region, while cohesin is enriched in the radial chromatin. Thus, the pericentric region serves as an ideal model for deducing the role of SMC complexes in chromosome organization. We find condensin-mediated chromatin loops establish a robust chromatin organization, while cohesin limits the area that chromatin loops can explore. Upon biorientation, extensional force from the mitotic spindle aggregates condensin-bound chromatin from its equilibrium position to the axial core of pericentric chromatin, resulting in amplified axial tension. The axial localization of condensin depends on condensin's ability to bind to chromatin to form loops, while the radial localization of cohesin depends on cohesin's ability to diffuse along chromatin. The different chromatin-tethering modalities of condensin and cohesin result in their geometric partitioning in the presence of an extensional force on chromatin.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Centrômero/metabolismo , Cromátides/metabolismo , DNA/metabolismo , Metáfase , Modelos Biológicos , Coesinas
7.
Mol Biol Cell ; 29(3): 285-294, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29187574

RESUMO

XMAP215/Dis1 family proteins are potent microtubule polymerases, critical for mitotic spindle structure and dynamics. While microtubule polymerase activity is driven by an N-terminal tumor overexpressed gene (TOG) domain array, proper cellular localization is a requisite for full activity and is mediated by a C-terminal domain. Structural insight into the C-terminal domain's architecture and localization mechanism remain outstanding. We present the crystal structure of the Saccharomyces cerevisiae Stu2 C-terminal domain, revealing a 15-nm parallel homodimeric coiled coil. The parallel architecture of the coiled coil has mechanistic implications for the arrangement of the homodimer's N-terminal TOG domains during microtubule polymerization. The coiled coil has two spatially distinct conserved regions: CRI and CRII. Mutations in CRI and CRII perturb the distribution and localization of Stu2 along the mitotic spindle and yield defects in spindle morphology including increased frequencies of mispositioned and fragmented spindles. Collectively, these data highlight roles for the Stu2 dimerization domain as a scaffold for factor binding that optimally positions Stu2 on the mitotic spindle to promote proper spindle structure and dynamics.


Assuntos
Cinetocoros/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Ligação Proteica , Domínios Proteicos/fisiologia , Elementos Estruturais de Proteínas/fisiologia , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Fuso Acromático/fisiologia , Tubulina (Proteína)/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-29167283

RESUMO

ChromoShake is a three-dimensional simulator designed to explore the range of configurational states a chromosome can adopt based on thermodynamic fluctuations of the polymer chain. Here, we refine ChromoShake to generate dynamic simulations of a DNA-based motor protein such as condensin walking along the chromatin substrate. We model walking as a rotation of DNA-binding heat-repeat proteins around one another. The simulation is applied to several configurations of DNA to reveal the consequences of mechanical stepping on taut chromatin under tension versus loop extrusion on single-tethered, floppy chromatin substrates. These simulations provide testable hypotheses for condensin and other DNA-based motors functioning along interphase chromosomes. Our model reveals a novel mechanism for condensin enrichment in the pericentromeric region of mitotic chromosomes. Increased condensin dwell time at centromeres results in a high density of pericentric loops that in turn provide substrate for additional condensin.

9.
Mol Biol Cell ; 28(12): 1701-1711, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28450453

RESUMO

Chromatin exhibits increased mobility on DNA damage, but the biophysical basis for this behavior remains unknown. To explore the mechanisms that drive DNA damage-induced chromosome mobility, we use single-particle tracking of tagged chromosomal loci during interphase in live yeast cells together with polymer models of chromatin chains. Telomeres become mobilized from sites on the nuclear envelope and the pericentromere expands after exposure to DNA-damaging agents. The magnitude of chromatin mobility induced by a single double-strand break requires active microtubule function. These findings reveal how relaxation of external tethers to the nuclear envelope and internal chromatin-chromatin tethers, together with microtubule dynamics, can mobilize the genome in response to DNA damage.


Assuntos
Cromatina/fisiologia , Dano ao DNA , Microtúbulos/metabolismo , Telômero/fisiologia , Cromatina/metabolismo , Citoesqueleto , Reparo do DNA , Regulação da Expressão Gênica , Interfase/genética , Microtúbulos/fisiologia , Membrana Nuclear/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Telômero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...