Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 856977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757762

RESUMO

Naïve T cell activation in secondary lymphoid organs such as lymph nodes (LNs) occurs upon recognition of cognate antigen presented by antigen presenting cells (APCs). T cell activation requires cytoskeleton rearrangement and sustained interactions with APCs. Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) proteins are a family of cytoskeletal effector proteins responsible for actin polymerization and are frequently found at the leading edge of motile cells. Ena/VASP proteins have been implicated in motility and adhesion in various cell types, but their role in primary T cell interstitial motility and activation has not been explored. Our goal was to determine the contribution of Ena/VASP proteins to T cell-APC interactions, T cell activation, and T cell expansion in vivo. Our results showed that naïve T cells from Ena/VASP-deficient mice have a significant reduction in antigen-specific T cell accumulation following Listeria monocytogenes infection. The kinetics of T cell expansion impairment were further confirmed in Ena/VASP-deficient T cells stimulated via dendritic cell immunization. To investigate the cause of this T cell expansion defect, we analyzed T cell-APC interactions in vivo by two-photon microscopy and observed fewer Ena/VASP-deficient naïve T cells interacting with APCs in LNs during priming. We also determined that Ena/VASP-deficient T cells formed conjugates with significantly less actin polymerization at the T cell-APC synapse, and that these conjugates were less stable than their WT counterparts. Finally, we found that Ena/VASP-deficient T cells have less LFA-1 polarized to the T cell-APC synapse. Thus, we conclude that Ena/VASP proteins contribute to T cell actin remodeling during T cell-APC interactions, which promotes the initiation of stable T cell conjugates during APC scanning. Therefore, Ena/VASP proteins are required for efficient activation and expansion of T cells in vivo.


Assuntos
Actinas , Linfócitos T CD8-Positivos , Moléculas de Adesão Celular , Proteínas dos Microfilamentos , Fosfoproteínas , Linfócitos T , Actinas/imunologia , Actinas/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Moléculas de Adesão Celular/imunologia , Moléculas de Adesão Celular/metabolismo , Proteínas do Citoesqueleto , Ativação Linfocitária , Camundongos , Proteínas dos Microfilamentos/imunologia , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas/imunologia , Fosfoproteínas/metabolismo , Polimerização , Linfócitos T/imunologia , Linfócitos T/metabolismo
2.
J Grad Med Educ ; 14(2): 166-170, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35463173

RESUMO

Background: As the Accreditation Council for Graduate Medical Education (ACGME) began to ask programs to report their efforts surrounding diversity, equity, and inclusion (DEI), program directors felt ill prepared to evaluate their programs and measure change. Objective: To develop a tool that would allow graduate medical education (GME) programs to evaluate the current state of DEI within their residencies, identify areas of need, and track progress; to evaluate feasibility of using this assessment method within family medicine training programs; and to analyze and report pilot data from implementation of these milestones within family medicine residency programs. Methods: The Association of Family Medicine Residency Directors (AFMRD) Diversity and Health Equity (DHE) Task Force developed a tool for program DEI evaluation modeled after the ACGME Milestones. These milestones focus on DEI assessment in 5 key domains: Institution, Curriculum, Evaluation, Resident Personnel, and Faculty Personnel. After finalizing a draft, a pilot implementation of the milestones was conducted by a convenience sample of 10 AFMRD DHE Task Force members for their own programs. Results: Scores varied widely across surveyed programs for all milestones. Highest average scores were seen for the Curriculum milestone (2.65) and the lowest for the Faculty Personnel milestone (2.0). Milestone assessments were completed within 10 to 40 minutes using various methods. Conclusions: The AFMRD DEI Milestones were developed for program assessment, goal setting, and tracking of progress related to DEI within residency programs. The pilot implementation showed these milestones were easily used by family medicine faculty members in diverse settings.


Assuntos
Internato e Residência , Acreditação , Competência Clínica , Currículo , Educação de Pós-Graduação em Medicina , Docentes de Medicina , Humanos
3.
Am J Prev Med ; 63(1): e1-e9, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35300889

RESUMO

INTRODUCTION: In this study, we examined the association between telemedicine use before a disaster and utilization of emergency or hospital services for ambulatory care sensitive conditions post-disaster. METHODS: Difference-in-differences analyses were conducted in 2020‒2021 to assess pre- to post-fire changes in emergency or hospital utilization for 5 ambulatory care sensitive conditions: asthma, diabetes, hypertension, coronary artery disease, and heart failure across all Kaiser Permanente Santa Rosa patients (N=108,113) based on telemedicine utilization before the 2017 Tubbs wildfire. Inverse probability of treatment weighting was employed for cohort balancing across telemedicine familiar status. RESULTS: Utilization for any ambulatory care sensitive condition increased from 9.03% pre-fire to 9.45% post-fire across the full cohort. Telemedicine familiarity (ref: not familiar) was associated with decreased absolute risk in pre- to post-fire inpatient and emergency department utilization for 4 conditions: asthma (absolute risk= -1.59%, 95% CI= -2.02%, -1.16%), diabetes (absolute risk= -0.68%, 95% CI= -0.89%, -0.47%), hypertension (absolute risk= -2.07%, 95% CI= -2.44%, -1.71%), and coronary artery disease (absolute risk= -0.43%, 95% CI= -0.61%, -0.24%). Telemedicine familiarity was associated with decreased relative change in pre- to post-fire utilization for 5 conditions: asthma (RRR=0.70, 95% CI=0.64, 0.75), diabetes (RRR=0.54, 95% CI=0.47, 0.63), hypertension (RRR=0.57, 95% CI=0.52, 0.62), heart failure (RRR=0.64, 95% CI=0.50, 0.82), and coronary artery disease (RRR=0.56, 95% CI=0.47, 0.67). Similar results were seen among patients residing in evacuation zones. CONCLUSIONS: Telemedicine familiarity pre-fire was associated with decreased inpatient and emergency department utilization for certain ambulatory care sensitive conditions for 1-year post-fire. These results suggest a role for telemedicine in preventing unnecessary emergency and hospital utilization following disasters.


Assuntos
Asma , Doença da Artéria Coronariana , Diabetes Mellitus , Desastres , Insuficiência Cardíaca , Hipertensão , Telemedicina , Assistência Ambulatorial , Condições Sensíveis à Atenção Primária , Serviço Hospitalar de Emergência , Insuficiência Cardíaca/terapia , Hospitais , Humanos , Telemedicina/métodos
4.
Front Immunol ; 13: 814203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35145521

RESUMO

T cells and B cells have been identified in human and murine islets, but the phenotype and role of islet lymphocytes is unknown. Resident immune populations set the stage for responses to inflammation in the islets during homeostasis and diabetes. Thus, we sought to identify the phenotype and effector function of islet lymphocytes to better understand their role in normal islets and in islets under metabolic stress. Lymphocytes were located in the islet parenchyma, and were comprised of a mix of naïve, activated, and memory T cell and B cell subsets, with an enrichment for regulatory B cell subsets. Use of a Nur77 reporter indicated that CD8 T cells and B cells both received local antigen stimulus, indicating that they responded to antigens present in the islets. Analysis of effector function showed that islet T cells and B cells produced the regulatory cytokine IL-10. The regulatory phenotype of islet T cells and B cells and their response to local antigenic stimuli remained stable under conditions of metabolic stress in the diet induced obesity (DIO) model. T cells present in human islets retained a similar activated and memory phenotype in non-diabetic and T2D donors. Under steady-state conditions, islet T cells and B cells have a regulatory phenotype, and thus may play a protective role in maintaining tissue homeostasis.


Assuntos
Linfócitos B Reguladores/imunologia , Homeostase/fisiologia , Ilhotas Pancreáticas/imunologia , Estresse Fisiológico/fisiologia , Linfócitos T/imunologia , Animais , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 2/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Obesidade/imunologia , Fenótipo
5.
Trends Ecol Evol ; 37(3): 211-222, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34969536

RESUMO

Social-ecological networks (SENs) represent the complex relationships between ecological and social systems and are a useful tool for analyzing and managing ecosystem services. However, mainstreaming the application of SENs in ecosystem service research has been hindered by a lack of clarity about how to match research questions to ecosystem service conceptualizations in SEN (i.e., as nodes, links, attributes, or emergent properties). Building from different disciplines, we propose a typology to represent ecosystem service in SENs and identify opportunities and challenges of using SENs in ecosystem service research. Our typology provides guidance for this growing field to improve research design and increase the breadth of questions that can be addressed with SEN to understand human-nature interdependencies in a changing world.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos
6.
Immunol Rev ; 306(1): 181-199, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34825390

RESUMO

Autoimmunity arises when mechanisms of immune tolerance fail. Here we discuss mechanisms of T cell activation and tolerance and the dynamics of the autoimmune response at the site of disease. Live imaging of autoimmunity provides the ability to analyze immune cell dynamics at the single-cell level within the complex intact environment where disease occurs. These analyses have revealed mechanisms of T cell activation and tolerance in the lymph nodes, mechanisms of T cell entry into sites of autoimmune disease, and mechanisms leading to pathogenesis or protection in the autoimmune lesions. The overarching conclusions point to stable versus transient T cell antigen presenting cell interactions dictating the balance between T cell activation and tolerance, and T cell restimulation as a driver of pathogenesis at the site of autoimmunity. Findings from models of multiple sclerosis and type 1 diabetes are highlighted, however, the results have implications for basic mechanisms of T cell regulation during immune responses, tumor immunity, and autoimmunity.


Assuntos
Autoimunidade , Diabetes Mellitus Tipo 1 , Humanos , Tolerância Imunológica , Ativação Linfocitária , Linfócitos T
7.
J Exp Med ; 218(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34415994

RESUMO

Understanding mechanisms of immune regulation is key to developing immunotherapies for autoimmunity and cancer. We examined the role of mononuclear phagocytes during peripheral T cell regulation in type 1 diabetes and melanoma. MERTK expression and activity in mononuclear phagocytes in the pancreatic islets promoted islet T cell regulation, resulting in reduced sensitivity of T cell scanning for cognate antigen in prediabetic islets. MERTK-dependent regulation led to reduced T cell activation and effector function at the disease site in islets and prevented rapid progression of type 1 diabetes. In human islets, MERTK-expressing cells were increased in remaining insulin-containing islets of type 1 diabetic patients, suggesting that MERTK protects islets from autoimmune destruction. MERTK also regulated T cell arrest in melanoma tumors. These data indicate that MERTK signaling in mononuclear phagocytes drives T cell regulation at inflammatory disease sites in peripheral tissues through a mechanism that reduces the sensitivity of scanning for antigen leading to reduced responsiveness to antigen.


Assuntos
Autoimunidade/fisiologia , Ilhotas Pancreáticas/enzimologia , Fagócitos/fisiologia , Linfócitos T/imunologia , c-Mer Tirosina Quinase/imunologia , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos/imunologia , Antígenos/metabolismo , Antígenos CD11/metabolismo , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/enzimologia , Diabetes Mellitus Tipo 1/patologia , Feminino , Humanos , Ilhotas Pancreáticas/imunologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/imunologia , Fagócitos/imunologia , Piperazinas/farmacologia , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismo
8.
Elife ; 92020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32510333

RESUMO

Lymphocyte migration is essential for the function of the adaptive immune system, and regulation of T cell entry into tissues is an effective therapy in autoimmune diseases. Little is known about the specific role of cytoskeletal effectors that mediate mechanical forces and morphological changes essential for migration in complex environments. We developed a new Formin-like-1 (FMNL1) knock-out mouse model and determined that the cytoskeletal effector FMNL1 is selectively required for effector T cell trafficking to inflamed tissues, without affecting naïve T cell entry into secondary lymphoid organs. Here, we identify a FMNL1-dependent mechanism of actin polymerization at the back of the cell that enables migration of the rigid lymphocyte nucleus through restrictive barriers. Furthermore, FMNL1-deficiency impairs the ability of self-reactive effector T cells to induce autoimmune disease. Overall, our data suggest that FMNL1 may be a potential therapeutic target to specifically modulate T cell trafficking to inflammatory sites.


Assuntos
Autoimunidade , Movimento Celular , Forminas/metabolismo , Inflamação/metabolismo , Linfócitos T/fisiologia , Animais , Linhagem Celular , Células Endoteliais , Forminas/genética , Sistema Linfático/citologia , Camundongos , Camundongos Knockout
9.
FASEB J ; 34(8): 10267-10285, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32533805

RESUMO

Adaptive angiogenesis is necessary for tissue repair, however, it may also be associated with the exacerbation of injury and development of chronic disease. In these studies, we demonstrate that lung mesenchymal vascular progenitor cells (MVPC) modulate adaptive angiogenesis via lineage trace, depletion of MVPC, and modulation of ß-catenin expression. Single cell sequencing confirmed MVPC as multipotential vascular progenitors, thus, genetic depletion resulted in alveolar simplification with reduced adaptive angiogenesis. Following vascular endothelial injury, Wnt activation in MVPC was sufficient to elicit an emphysema-like phenotype characterized by increased MLI, fibrosis, and MVPC driven adaptive angiogenesis. Lastly, activation of Wnt/ß-catenin signaling skewed the profile of human and murine MVPC toward an adaptive phenotype. These data suggest that lung MVPC drive angiogenesis in response to injury and regulate the microvascular niche as well as subsequent distal lung tissue architecture via Wnt signaling.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Endotélio Vascular/metabolismo , Pulmão/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neovascularização Patológica/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , Adulto , Idoso , Animais , Linhagem Celular , Endotélio Vascular/patologia , Feminino , Humanos , Pulmão/patologia , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos , Pessoa de Meia-Idade , Neovascularização Patológica/patologia , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia , Adulto Jovem , beta Catenina/metabolismo
10.
Front Immunol ; 10: 99, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30766536

RESUMO

Type 1 diabetes (T1D) is a T cell mediated autoimmune disease that affects more than 19 million people with incidence increasing rapidly worldwide. For T cells to effectively drive T1D, they must first traffic to the islets and extravasate through the islet vasculature. Understanding the cues that lead to T cell entry into inflamed islets is important because diagnosed T1D patients already have established immune infiltration of their islets. Here we show that CD11c+ cells are a key mediator of T cell trafficking to infiltrated islets in non-obese diabetic (NOD) mice. Using intravital 2-photon islet imaging we show that T cell extravasation into the islets is an extended process, with T cells arresting in the islet vasculature in close proximity to perivascular CD11c+ cells. Antigen is not required for T cell trafficking to infiltrated islets, but T cell chemokine receptor signaling is necessary. Using RNAseq, we show that islet CD11c+ cells express over 20 different chemokines that bind chemokine receptors expressed on islet T cells. One highly expressed chemokine-receptor pair is CXCL16-CXCR6. However, NOD. CXCR6-/- mice progressed normally to T1D and CXCR6 deficient T cells trafficked normally to the islets. Even with CXCR3 and CXCR6 dual deficiency, T cells trafficked to infiltrated islets. These data reinforce that chemokine receptor signaling is highly redundant for T cell trafficking to inflamed islets. Importantly, depletion of CD11c+ cells strongly inhibited T cell trafficking to infiltrated islets of NOD mice. We suggest that targeted depletion of CD11c+ cells associated with the islet vasculature may yield a therapeutic target to inhibit T cell trafficking to inflamed islets to prevent progression of T1D.


Assuntos
Antígeno CD11c/imunologia , Diabetes Mellitus Tipo 1/imunologia , Ilhotas Pancreáticas/imunologia , Linfócitos T/imunologia , Animais , Feminino , Camundongos Endogâmicos NOD , Camundongos Knockout
11.
Diabetes ; 67(9): 1836-1846, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29976617

RESUMO

We recently established that hybrid insulin peptides (HIPs), formed in islet ß-cells by fusion of insulin C-peptide fragments to peptides of chromogranin A or islet amyloid polypeptide, are ligands for diabetogenic CD4 T-cell clones. The goal of this study was to investigate whether HIP-reactive T cells were indicative of ongoing autoimmunity. MHC class II tetramers were used to investigate the presence, phenotype, and function of HIP-reactive and insulin-reactive T cells in NOD mice. Insulin-reactive T cells encounter their antigen early in disease, but they express FoxP3 and therefore may contribute to immune regulation. In contrast, HIP-reactive T cells are proinflammatory and highly diabetogenic in an adoptive transfer model. Because the frequency of antigen-experienced HIP-reactive T cells increases over progression of disease, they may serve as biomarkers of autoimmune diabetes.


Assuntos
Autoantígenos/metabolismo , Peptídeo C/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Cromogranina A/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Recombinação Genética , Animais , Autoantígenos/química , Autoantígenos/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/patologia , Doenças Autoimunes/fisiopatologia , Autoimunidade , Biomarcadores/sangue , Peptídeo C/química , Peptídeo C/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Células Cultivadas , Cromogranina A/química , Cromogranina A/genética , Células Clonais , Cruzamentos Genéticos , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/fisiopatologia , Progressão da Doença , Feminino , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Ativação Linfocitária , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Organismos Livres de Patógenos Específicos
12.
Methods Mol Biol ; 1799: 225-235, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29956155

RESUMO

The generation of class-switched, high-affinity, antibody-producing B cells plays a critical role in the establishment of type 2 immunity to intestinal helminths as well as in the pathogenesis of allergy and asthma. The generation of these high-affinity, antibody-producing B cells occurs in germinal centers (GC) and relies on interactions with follicular dendritic cells (FDCs) and T follicular helper (Tfh) cells. One critical mediator produced by Tfh cells in GCs is interleukin-4 (IL-4). Tfh-derived IL-4 drives class switching to type 2 antibody isotypes IgE and IgG1 and is required for high-affinity IgG1 production. In vivo detection of IL-4-expressing Tfh cells is required to better understand the role of these cells during the GC response. Detection of IL-4-expressing cells has been greatly improved by the generation of the IL-44get reporter mice, which read out IL-4 expression as green fluorescent protein (GFP). Much has been learned from these mice with regard to type 2 immunity using flow cytometry and immunohistochemistry. However, these methods do not allow the study of cellular behavior and interactions in real time. In contrast, multi-photon microscopy allows for deep tissue imaging and tracking of multiple cell types in intact tissues over time. Here, we describe a protocol for in vivo detection of IL-4-expressing Tfh cells in an explanted popliteal lymph node by multi-photon microscopy. The dynamics of Tfh cell motility and their interactions with FDC networks in the GCs were analyzed.


Assuntos
Expressão Gênica , Interleucina-4/genética , Linfonodos/imunologia , Linfonodos/metabolismo , Imagem Molecular , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Genes Reporter , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Processamento de Imagem Assistida por Computador , Interleucina-4/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia , Software , Linfócitos T Auxiliares-Indutores/citologia
13.
Nat Commun ; 8(1): 2034, 2017 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-29229919

RESUMO

Antigens derived from viral infection or vaccination can persist within a host for many weeks after resolution of the infection or vaccine responses. We previously identified lymphatic endothelial cells (LEC) as the repository for this antigen archival, yet LECs are unable to present their archived antigens to CD8+ T cells, and instead transfer their antigens to CD11c+ antigen-presenting cells (APC). Here we show that the exchange of archived antigens between LECs and APCs is mediated by migratory dendritic cells (DC). After vaccination, both migratory basic leucine zipper ATF-like transcription factor 3 (BatF3)-dependent and BatF3-independent DCs are responsible for antigen exchange and cross-presentation. However, exchange of archived viral antigens is mediated only by BatF3-dependent migratory DCs potentially acquiring apoptotic LECs. In conclusion, LEC-archived antigens are exchanged with migratory DCs, both directly and through LEC apoptosis, to cross-present archived antigens to circulating T cells.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Células Endoteliais/imunologia , Linfonodos/imunologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Movimento Celular/imunologia , Feminino , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Proteínas Repressoras/metabolismo
14.
PLoS Pathog ; 13(5): e1006388, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28542482

RESUMO

Interferons (IFNs) target macrophages to regulate inflammation and resistance to microbial infections. The type II IFN (IFNγ) acts on a cell surface receptor (IFNGR) to promote gene expression that enhance macrophage inflammatory and anti-microbial activity. Type I IFNs can dampen macrophage responsiveness to IFNγ and are associated with increased susceptibility to numerous bacterial infections. The precise mechanisms responsible for these effects remain unclear. Type I IFNs silence macrophage ifngr1 transcription and thus reduce cell surface expression of IFNGR1. To test how these events might impact macrophage activation and host resistance during bacterial infection, we developed transgenic mice that express a functional FLAG-tagged IFNGR1 (fGR1) driven by a macrophage-specific promoter. Macrophages from fGR1 mice expressed physiologic levels of cell surface IFNGR1 at steady state and responded equivalently to WT C57Bl/6 macrophages when treated with IFNγ alone. However, fGR1 macrophages retained cell surface IFNGR1 and showed enhanced responsiveness to IFNγ in the presence of type I IFNs. When fGR1 mice were infected with the bacterium Listeria monocytogenes their resistance was significantly increased, despite normal type I and II IFN production. Enhanced resistance was dependent on IFNγ and associated with increased macrophage activation and antimicrobial function. These results argue that down regulation of myeloid cell IFNGR1 is an important mechanism by which type I IFNs suppress inflammatory and anti-bacterial functions of macrophages.


Assuntos
Listeria monocytogenes/fisiologia , Listeriose/imunologia , Macrófagos/imunologia , Receptores de Interferon/genética , Animais , Regulação para Baixo , Feminino , Humanos , Interferon Tipo I/imunologia , Listeriose/genética , Listeriose/microbiologia , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Knockout , Receptores de Interferon/imunologia , Receptor de Interferon gama
15.
Proc Natl Acad Sci U S A ; 114(14): E2901-E2910, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28320969

RESUMO

Vasodilator-stimulated phosphoprotein (VASP) and Ena-VASP-like (EVL) are cytoskeletal effector proteins implicated in regulating cell morphology, adhesion, and migration in various cell types. However, the role of these proteins in T-cell motility, adhesion, and in vivo trafficking remains poorly understood. This study identifies a specific role for EVL and VASP in T-cell diapedesis and trafficking. We demonstrate that EVL and VASP are selectively required for activated T-cell trafficking but are not required for normal T-cell development or for naïve T-cell trafficking to lymph nodes and spleen. Using a model of multiple sclerosis, we show an impairment in trafficking of EVL/VASP-deficient activated T cells to the inflamed central nervous system of mice with experimental autoimmune encephalomyelitis. Additionally, we found a defect in trafficking of EVL/VASP double-knockout (dKO) T cells to the inflamed skin and secondary lymphoid organs. Deletion of EVL and VASP resulted in the impairment in α4 integrin (CD49d) expression and function. Unexpectedly, EVL/VASP dKO T cells did not exhibit alterations in shear-resistant adhesion to, or in crawling on, primary endothelial cells under physiologic shear forces. Instead, deletion of EVL and VASP impaired T-cell diapedesis. Furthermore, T-cell diapedesis became equivalent between control and EVL/VASP dKO T cells upon α4 integrin blockade. Overall, EVL and VASP selectively mediate activated T-cell trafficking by promoting the diapedesis step of transendothelial migration in a α4 integrin-dependent manner.


Assuntos
Moléculas de Adesão Celular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Linfócitos T/fisiologia , Migração Transendotelial e Transepitelial/fisiologia , Actinas/metabolismo , Animais , Linfócitos T CD4-Positivos/fisiologia , Adesão Celular , Moléculas de Adesão Celular/genética , Quimiotaxia/fisiologia , Inflamação/patologia , Integrina alfa4/metabolismo , Ativação Linfocitária , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Fosfoproteínas/genética
16.
J Clin Med ; 5(11)2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27834793

RESUMO

B cells have been strongly implicated in the development of human type 1 diabetes and are required for disease in the NOD mouse model. These functions are dependent on B cell antigen receptor (BCR) specificity and expression of MHC, implicating linked autoantigen recognition and presentation to effector T cells. BCR-antigen affinity requirements for participation in disease are unclear. We hypothesized that BCR affinity for the autoantigen insulin differentially affects lymphocyte functionality, including tolerance modality and the ability to acquire and become activated in the diabetogenic environment. Using combined transgenic and retrogenic heavy and light chain to create multiple insulin-binding BCRs, we demonstrate that affinity for insulin is a critical determinant of the function of these autoreactive cells. We show that both BCR affinity for insulin and genetic background affect tolerance induction in immature B cells. We also find new evidence that may explain the enigmatic ability of B cells expressing 125 anti-insulin BCR to support development of TID in NOD mice despite a reported affinity beneath requirements for binding insulin at in vivo concentrations. We report that when expressed as an antigen receptor the affinity of 125 is much higher than determined by measurements of the soluble form. Finally, we show that in vivo acquisition of insulin requires both sufficient BCR affinity and permissive host/tissue environment. We propose that a confluence of BCR affinity, pancreas environment, and B cell tolerance-regulating genes in the NOD animal allows acquisition of insulin and autoimmunity.

17.
J Immunol ; 196(1): 39-43, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26608914

RESUMO

T cells reactive to ß cell Ags are critical players in the development of autoimmune type 1 diabetes. Using a panel of diabetogenic CD4 T cell clones derived from the NOD mouse, we recently identified the ß cell secretory granule protein, chromogranin A (ChgA), as a new autoantigen in type 1 diabetes. CD4 T cells reactive to ChgA are pathogenic and rapidly transfer diabetes into young NOD recipients. We report in this article that NOD.ChgA(-/-) mice do not develop diabetes and show little evidence of autoimmunity in the pancreatic islets. Using tetramer analysis, we demonstrate that ChgA-reactive T cells are present in these mice but remain naive. In contrast, in NOD.ChgA(+/+) mice, a majority of the ChgA-reactive T cells are Ag experienced. Our results suggest that the presence of ChgA and subsequent activation of ChgA-reactive T cells are essential for the initiation and development of autoimmune diabetes in NOD mice.


Assuntos
Autoantígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Cromogranina A/genética , Diabetes Mellitus Tipo 1/genética , Transferência Adotiva , Animais , Autoimunidade/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/transplante , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Cromogranina A/imunologia , Diabetes Mellitus Tipo 1/imunologia , Citometria de Fluxo , Ilhotas Pancreáticas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Repetições de Microssatélites/genética
18.
J Immunol ; 195(1): 71-9, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26034175

RESUMO

In addition to the secretion of Ag-specific Abs, B cells may play an important role in the generation of immune responses by efficiently presenting Ag to T cells. We and other investigators recently described a subpopulation of CD11c(+) B cells (Age/autoimmune-associated B cells [ABCs]) that appear with age, during virus infections, and at the onset of some autoimmune diseases and participate in autoimmune responses by secreting autoantibodies. In this study, we assessed the ability of these cells to present Ag and activate Ag-specific T cells. We demonstrated that ABCs present Ag to T cells, in vitro and in vivo, better than do follicular B cells (FO cells). Our data indicate that ABCs express higher levels of the chemokine receptor CCR7, have higher responsiveness to CCL21 and CCL19 than do FO cells, and are localized at the T/B cell border in spleen. Using multiphoton microscopy, we show that, in vivo, CD11c(+) B cells form significantly more stable interactions with T cells than do FO cells. Together, these data identify a previously undescribed role for ABCs as potent APCs and suggest another potential mechanism by which these cells can influence immune responses and/or the development of autoimmunity.


Assuntos
Envelhecimento/imunologia , Células Apresentadoras de Antígenos/imunologia , Autoimunidade , Linfócitos B/imunologia , Antígeno CD11c/imunologia , Baço/imunologia , Envelhecimento/genética , Animais , Células Apresentadoras de Antígenos/citologia , Autoanticorpos/biossíntese , Linfócitos B/citologia , Antígeno CD11c/genética , Quimiocina CCL19/genética , Quimiocina CCL19/imunologia , Quimiocina CCL21/genética , Quimiocina CCL21/imunologia , Feminino , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Receptores CCR7/genética , Receptores CCR7/imunologia , Transdução de Sinais , Baço/citologia , Linfócitos T/citologia , Linfócitos T/imunologia
19.
J Immunol ; 194(2): 522-30, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25505281

RESUMO

In type 1 diabetes, the pancreatic islets are an important site for therapeutic intervention because immune infiltration of the islets is well established at diagnosis. Therefore, understanding the events that underlie the continued progression of the autoimmune response and islet destruction is critical. Islet infiltration and destruction is an asynchronous process, making it important to analyze the disease process on a single islet basis. To understand how T cell stimulation evolves through the process of islet infiltration, we analyzed the dynamics of T cell movement and interactions within individual islets of spontaneously autoimmune NOD mice. Using both intravital and explanted two-photon islet imaging, we defined a correlation between increased islet infiltration and increased T cell motility. Early T cell arrest was Ag dependent and due, at least in part, to Ag recognition through sustained interactions with CD11c(+) APCs. As islet infiltration progressed, T cell motility became Ag independent, with a loss of T cell arrest and sustained interactions with CD11c(+) APCs. These studies suggest that the autoimmune T cell response in the islets may be temporarily dampened during the course of islet infiltration and disease progression.


Assuntos
Autoantígenos/imunologia , Movimento Celular/imunologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/imunologia , Ilhotas Pancreáticas/imunologia , Linfócitos T/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/patologia , Autoantígenos/genética , Antígeno CD11c/genética , Antígeno CD11c/imunologia , Movimento Celular/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Ilhotas Pancreáticas/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Linfócitos T/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...