Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(26): 9932-9939, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37348843

RESUMO

The global transition from fossil fuels to green energy underpins the need for efficient and reliable energy storage systems. Advanced analysis and characterization of battery materials is not only important to understand fundamental battery properties but also crucial for their continued development. A deep understanding of these systems is often difficult to obtain through only pre- and/or post-mortem analyses, with the full complexity of a battery being hidden in its operational state. Thus, we have developed an operando methodology to analyze solid-state batteries (SSBs) structurally as well as chemically before, during, and after cycling. The approach is based on a specially designed sample holder, which enables a variety of electrochemical experiments. Since the entire workflow is performed within a single focused ion beam scanning electron microscope equipped with an in-house developed magnetic sector secondary ion mass spectrometer, we are able to pause the cycling at any time, perform analysis, and then continue cycling. Microstructural analysis is performed via secondary electron imaging, and the chemical mapping is performed using the secondary ion mass spectrometer. In this proof-of-concept study, we were able to identify dendrites in a short-circuited symmetric cell and to chemically map dendritic structures. While this methodology focuses on SSBs, the approach can directly be adapted to different battery systems and beyond. Our technique clearly has an advantage over many alternatives for battery analysis as no transfer of samples between instruments is needed and a correlation between the microstructure, chemical composition, and electrochemical performance is obtained directly.

2.
Nat Commun ; 14(1): 2010, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37037807

RESUMO

The production of green hydrogen in water electrolyzers is limited by the oxygen evolution reaction (OER). State-of-the-art electrocatalysts are based on Ir. Ru electrocatalysts are a suitable alternative provided their performance is improved. Here we show that low-Ru-content pyrochlores (R2MnRuO7, R = Y, Tb and Dy) display high activity and durability for the OER in acidic media. Y2MnRuO7 is the most stable catalyst, displaying 1.5 V at 10 mA cm-2 for 40 h, or 5000 cycles up to 1.7 V. Computational and experimental results show that the high performance is owed to Ru sites embedded in RuMnOx surface layers. A water electrolyser with Y2MnRuO7 (with only 0.2 mgRu cm-2) reaches 1 A cm-2 at 1.75 V, remaining stable at 200 mA cm-2 for more than 24 h. These results encourage further investigation on Ru catalysts in which a partial replacement of Ru by inexpensive cations can enhance the OER performance.

3.
Membranes (Basel) ; 13(3)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36984715

RESUMO

Anion exchange membranes (AEM) are core components for alkaline electrochemical energy technologies, such as water electrolysis and fuel cells. They are regarded as promising alternatives for proton exchange membranes (PEM) due to the possibility of using platinum group metal (PGM)-free electrocatalysts. However, their chemical stability and conductivity are still of great concern, which is appearing to be a major challenge for developing AEM-based energy systems. Herein, we highlight an AEM with styrene-b-ethylene-b-butylene-b-styrene copolymer (SEBS) as a backbone and pyrrolidinium or piperidinium functional groups tethered on flexible ethylene oxide spacer side-chains (SEBS-Py2O6). This membrane reached 27.8 mS cm-1 hydroxide ion conductivity at room temperature, which is higher compared to previously obtained piperidinium-functionalized SEBS reaching up to 10.09 mS cm-1. The SEBS-Py206 combined with PGM-free electrodes in an AWE water electrolysis (AEMWE) cell achieves 520 mA cm-2 at 2 V in 0.1 M KOH and 171 mA cm-2 in ultra-pure water (UPW). This high performance indicates that SEBS-Py2O6 membranes are suitable for application in water electrolysis.

4.
Nat Commun ; 13(1): 7935, 2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566246

RESUMO

Proton exchange membrane water electrolysis is a promising technology to produce green hydrogen from renewables, as it can efficiently achieve high current densities. Lowering iridium amount in oxygen evolution reaction electrocatalysts is critical for achieving cost-effective production of green hydrogen. In this work, we develop catalysts from Ir double perovskites. Sr2CaIrO6 achieves 10 mA cm-2 at only 1.48 V. The surface of the perovskite reconstructs when immersed in an acidic electrolyte and during the first catalytic cycles, resulting in a stable surface conformed by short-range order edge-sharing IrO6 octahedra arranged in an open structure responsible for the high performance. A proton exchange membrane water electrolysis cell is developed with Sr2CaIrO6 as anode and low Ir loading (0.4 mgIr cm-2). The cell achieves 2.40 V at 6 A cm-2 (overload) and no loss in performance at a constant 2 A cm-2 (nominal load). Thus, reducing Ir use without compromising efficiency and lifetime.

5.
Sci Rep ; 10(1): 10948, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616871

RESUMO

Rationally designed free-standing and binder-free Raney-type nickel-molybdenum (Ni-Mo) electrodes produced via atmospheric plasma spraying (APS) are developed by correlating APS process parameters with the microstructure of electrodes and their electrochemical performance in alkaline media. The results revealed that the electrode morphology and elemental composition are highly affected by the plasma parameters during the electrode fabrication. It is found that increasing plasma gas flow rate and input plasma power resulted in higher in-flight particle velocities and shorter dwell time, which in result delivered electrodes with much finer structure exhibiting homogeneous distribution of phases, larger quantity of micro pores and suitable content of Ni and Mo. Tafel slope of electrodes decreased with increasing the in-flight particles velocities from 71 to 33 mV dec-1 in 30 wt.% KOH. However, beyond a critical threshold in-flight velocity and temperature of particles, electrodes started to exhibit larger globular pores and consequently reduced catalytic performance and higher Tafel slop of 36 mV dec-1 in 30 wt.% KOH. Despite slightly lower electrochemical performance, the electrodes produced with highest plasma gas flow and energy showed most inter-particle bonded structure as well as highest stability with no measurable degradation over 47 days in operation as HER electrode in 30 wt.% KOH. The Raney-type Ni-Mo electrode fabricated at highest plasma gas flow rate and input plasma power has been tested as HER electrode in alkaline water electrolyzer, which delivered high current densities of 0.72 and 2 A cm-2 at 1.8 and 2.2 V, respectively, representing a novel prime example of HER electrode, which can synergistically catalyze the HER in alkaline electrolyzer. This study shows that sluggish alkaline HER can be circumvented by rational electrode composition and interface engineering.

6.
Beilstein J Nanotechnol ; 11: 583-596, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32318319

RESUMO

Electrochemical strain microscopy (ESM) is a powerful atomic force microscopy (AFM) mode for the investigation of ion dynamics and activities in energy storage materials. Here we compare the changes in commercial LiFePO4 cathodes due to ageing and its influence on the measured ESM signal. Additionally, the ESM signal dynamics are analysed to generate characteristic time constants of the diffusion process, induced by a dc-voltage pulse, which changes the ionic concentration in the material volume under the AFM tip. The ageing of the cathode is found to be governed by a decrease of the electrochemical activity and the loss of available lithium for cycling, which can be stored in the cathode.

7.
Molecules ; 24(19)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569772

RESUMO

The effects of carbon monoxide (CO) and hydrogen sulfide (H2S) in concentrations close to their respective limits in the Hydrogen Quality Standard ISO 14687-2:2012 on the performance of proton exchange membrane fuel cells (PEMFCs) with ultralow-loaded platinum anode catalyst layers (CLs) were investigated. The anodic loadings were 50, 25, and 15 µg/cm2, which represent the current state-of-the-art, target, and stretch target, respectively, for future automotive PEMFCs. Additionally, the effect of shut-down and start-up (SD/SU) processes on recovery from sulfur poisoning was investigated. CO at an ISO concentration of 0.2 ppm caused severe voltage losses of ~40-50% for ultralow-loaded anode CLs. When H2S was in the fuel, these anode CLs exhibited both a nonlinear decrease in tolerance toward sulfur and an improved self-recovery during shut-down and start-up (SD/SU) processes. This observation was hypothesized to have resulted from the decrease in the ratio between CL thickness and geometric cell area, as interfacial effects of water in the pores increasingly impacted the performance of ultrathin CLs. The results indicate that during the next discussions on the Hydrogen Quality Standard, a reduction in the CO limit could be a reasonable alternative considering future PEMFC anodic loadings, while the H2S limit might not require modification.


Assuntos
Monóxido de Carbono/química , Eletrodos , Sulfeto de Hidrogênio/química , Platina/química , Fontes de Energia Bioelétrica , Catálise , Fontes de Energia Elétrica , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...