Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 9(8)2017 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-28805676

RESUMO

In recent years it has been well established that two major constituent parts of the ubiquitin proteasome system (UPS)-the proteasome holoenzymes and a number of ubiquitin ligases-play a crucial role, not only in virus replication but also in the regulation of the immunogenicity of human immunodeficiency virus type 1 (HIV-1). However, the role in HIV-1 replication of the third major component, the deubiquitinating enzymes (DUBs), has remained largely unknown. In this study, we show that the DUB-inhibitors (DIs) P22077 and PR-619, specific for the DUBs USP7 and USP47, impair Gag processing and thereby reduce the infectivity of released virions without affecting viral protease activity. Furthermore, the replication capacity of X4- and R5-tropic HIV-1NL4-3 in human lymphatic tissue is decreased upon treatment with these inhibitors without affecting cell viability. Most strikingly, combinatory treatment with DIs and proteasome inhibitors synergistically blocks virus replication at concentrations where mono-treatment was ineffective, indicating that DIs can boost the therapeutic effect of proteasome inhibitors. In addition, P22077 and PR-619 increase the polyubiquitination of Gag and thus its entry into the UPS and the major histocompatibility complex (MHC)-I pathway. In summary, our data point towards a model in which specific inhibitors of DUBs not only interfere with virus spread but also increase the immune recognition of HIV-1 expressing cells.


Assuntos
Fármacos Anti-HIV/farmacologia , Enzimas Desubiquitinantes/antagonistas & inibidores , Infecções por HIV/enzimologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Aminopiridinas/farmacologia , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Genes MHC Classe I , Infecções por HIV/imunologia , HIV-1/genética , HIV-1/imunologia , HIV-1/fisiologia , Humanos , Tiocianatos/farmacologia , Tiofenos/farmacologia , Ubiquitinação/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
2.
PLoS One ; 12(4): e0174254, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28388673

RESUMO

There is a significantly higher risk for type II diabetes in HIV-1 carriers, albeit the molecular mechanism for this HIV-related pathology remains enigmatic. The 52 amino acid HIV-1 p6 Gag protein is synthesized as the C-terminal part of the Gag polyprotein Pr55. In this context, p6 promotes virus release by its two late (L-) domains, and facilitates the incorporation of the viral accessory protein Vpr. However, the function of p6 in its mature form, after proteolytic release from Gag, has not been investigated yet. We found that the mature p6 represents the first known viral substrate of the ubiquitously expressed cytosolic metalloendopeptidase insulin-degrading enzyme (IDE). IDE is sufficient and required for degradation of p6, and p6 is approximately 100-fold more efficiently degraded by IDE than its eponymous substrate insulin. This observation appears to be specific for HIV-1, as p6 proteins from HIV-2 and simian immunodeficiency virus, as well as the 51 amino acid p9 from equine infectious anaemia virus were insensitive to IDE degradation. The amount of virus-associated p6, as well as the efficiency of release and maturation of progeny viruses does not depend on the presence of IDE in the host cells, as it was shown by CRISPR/Cas9 edited IDE KO cells. However, HIV-1 mutants harboring IDE-insensitive p6 variants exhibit reduced virus replication capacity, a phenomenon that seems to depend on the presence of an X4-tropic Env. Furthermore, competing for IDE by exogenous insulin or inhibiting IDE by the highly specific inhibitor 6bK, also reduced virus replication. This effect could be specifically attributed to IDE since replication of HIV-1 variants coding for an IDE-insensitive p6 were inert towards IDE-inhibition. Our cumulative data support a model in which removal of p6 during viral entry is important for virus replication, at least in the case of X4 tropic HIV-1.


Assuntos
Produtos do Gene env/metabolismo , HIV-1/fisiologia , Insulisina/metabolismo , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Células Cultivadas , Células HeLa , Humanos , Insulina/metabolismo , Proteólise , Linfócitos T/metabolismo
3.
Viruses ; 8(4): 117, 2016 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-27120610

RESUMO

The HIV-1 Gag p6 protein regulates the final abscission step of nascent virions from the cell membrane by the action of its two late (L-) domains, which recruit Tsg101 and ALIX, components of the ESCRT system. Even though p6 consists of only 52 amino acids, it is encoded by one of the most polymorphic regions of the HIV-1 gag gene and undergoes various posttranslational modifications including sumoylation, ubiquitination, and phosphorylation. In addition, it mediates the incorporation of the HIV-1 accessory protein Vpr into budding virions. Despite its small size, p6 exhibits an unusually high charge density. In this study, we show that mutation of the conserved glutamic acids within p6 increases the membrane association of Pr55 Gag followed by enhanced polyubiquitination and MHC-I antigen presentation of Gag-derived epitopes, possibly due to prolonged exposure to membrane bound E3 ligases. The replication capacity of the total glutamic acid mutant E0A was almost completely impaired, which was accompanied by defective virus release that could not be rescued by ALIX overexpression. Altogether, our data indicate that the glutamic acids within p6 contribute to the late steps of viral replication and may contribute to the interaction of Gag with the plasma membrane.


Assuntos
Membrana Celular/metabolismo , Ácido Glutâmico/metabolismo , HIV-1/fisiologia , Liberação de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Expressão Gênica , Ácido Glutâmico/química , Ácido Glutâmico/genética , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Humanos , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ubiquitinação , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
4.
Viruses ; 6(10): 3738-65, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25279819

RESUMO

The HIV-1 p6 Gag protein contains two late assembly (l-) domains that recruit proteins of the endosomal sorting complex required for transport (ESCRT) pathway to mediate membrane fission between the nascent virion and the cell membrane. It was recently demonstrated that mutation of the highly conserved Ser-40 to Phe (S40F) disturbs CA-SP1 processing, virus morphogenesis, and infectivity. It also causes the formation of filopodia-like structures, while virus release remains unaffected. Here, we show that the mutation S40F, but not the conservative mutation to Asp (S40D) or Asn (S40N), augments membrane association, K48-linked polyubiquitination, entry into the 26S proteasome, and, consequently, enhances MHC-I antigen presentation of Gag derived epitopes. Nuclear magnetic resonance (NMR) structure analyses revealed that the newly introduced Phe-40, together with Tyr-36, causes the formation of a hydrophobic patch at the C-terminal α-helix of p6, providing a molecular rationale for the enhanced membrane association of Gag observed in vitro and in HIV-1 expressing cells. The extended exposure of the S40F mutant to unidentified membrane-resident ubiquitin E3-ligases might trigger the polyubiquitination of Gag. The cumulative data support a previous model of a so far undefined property of p6, which, in addition to MA, acts as membrane targeting domain of Gag.


Assuntos
Infecções por HIV/virologia , HIV-1/genética , Fenilalanina/genética , Serina/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Sequência de Aminoácidos , Apresentação de Antígeno , Membrana Celular/metabolismo , Epitopos , HIV-1/fisiologia , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mutação de Sentido Incorreto , Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios Proteicos , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Vírion , Liberação de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
5.
PLoS One ; 8(2): e55567, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23393593

RESUMO

N-terminal stable in frame fusion of ubiquitin (Ub) has been shown to target the fusion protein for proteasomal degradation. This pathway, called the Ub fusion degradation (UFD), might also elevate MHC class I (MHC-I) antigen presentation of specific antigens. The UFD, mainly studied on cytosolic proteins, has been described to be mediated by polyubiquitination of specific lysine residues within the fused Ub moiety. Using the well characterized melanoma-specific antigen MelanA as a model protein, we analyzed the requirements of the UFD for ubiquitination and proteasomal degradation of a transmembrane protein. Here we show that fusion of the non-cleavable Ub(G76V) variant to the N-terminus of MelanA results in rapid proteasomal degradation via the endoplasmic reticulum-associated degradation (ERAD) pathway and, consequently, leads to an increased MHC-I antigen presentation. While lysine residues within Ub are dispensable for these effects, the presence of one single lysine residue, irrespectively of its location along the fusion protein, is sufficient to induce degradation of MelanA. These results show that the ubiquitination, ER to cytosol relocation and proteasomal degradation of a transmembrane protein can be increased by N-terminal fusion of Ub at the presence of at least one, position independent lysine residue. These findings are in contrast to the conventional wisdom concerning the UFD and indicate a new concept to target a protein into the ubiquitin-proteasome system (UPS) and thus for enhanced MHC-I antigen presentation, and might open up new possibilities in the development of tumor vaccines.


Assuntos
Lisina/metabolismo , Antígenos Específicos de Melanoma/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Apresentação de Antígeno/genética , Apresentação de Antígeno/fisiologia , Western Blotting , Linhagem Celular , Humanos , Antígenos Específicos de Melanoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...