Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3599, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678014

RESUMO

Targeting the supportive tumor microenvironment (TME) is an approach of high interest in cancer drug development. However, assessing TME-targeted drug candidates presents a unique set of challenges. We develop a comprehensive screening platform that allows monitoring, quantifying, and ranking drug-induced effects in self-organizing, vascularized tumor spheroids (VTSs). The confrontation of four human-derived cell populations makes it possible to recreate and study complex changes in TME composition and cell-cell interaction. The platform is modular and adaptable for tumor entity or genetic manipulation. Treatment effects are recorded by light sheet fluorescence microscopy and translated by an advanced image analysis routine in processable multi-parametric datasets. The system proved to be robust, with strong interassay reliability. We demonstrate the platform's utility for evaluating TME-targeted antifibrotic and antiangiogenic drugs side-by-side. The platform's output enabled the differential evaluation of even closely related drug candidates according to projected therapeutic needs.


Assuntos
Neoplasias da Mama , Microscopia de Fluorescência , Esferoides Celulares , Microambiente Tumoral , Humanos , Microambiente Tumoral/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Microscopia de Fluorescência/métodos , Feminino , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia
2.
Front Endocrinol (Lausanne) ; 14: 1267590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027153

RESUMO

Xiphophorus fish exhibit a clear phenotypic polymorphism in puberty onset and reproductive strategies of males. In X. nigrensis and X. multilineatus, puberty onset is genetically determined and linked to a melanocortin 4 receptor (Mc4r) polymorphism of wild-type and mutant alleles on the sex chromosomes. We hypothesized that Mc4r mutant alleles act on wild-type alleles by a dominant negative effect through receptor dimerization, leading to differential intracellular signaling and effector gene activation. Depending on signaling strength, the onset of puberty either occurs early or is delayed. Here, we show by Förster Resonance Energy Transfer (FRET) that wild-type Xiphophorus Mc4r monomers can form homodimers, but also heterodimers with mutant receptors resulting in compromised signaling which explains the reduced Mc4r signaling in large males. Thus, hetero- vs. homo- dimerization seems to be the key molecular mechanism for the polymorphism in puberty onset and body size in male fish.


Assuntos
Receptor Tipo 4 de Melanocortina , Maturidade Sexual , Animais , Masculino , Dimerização , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Polimorfismo Genético , Tamanho Corporal
3.
EMBO Mol Med ; 15(9): e16858, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37490001

RESUMO

Hyperreactive platelets are commonly observed in diabetic patients indicating a potential link between glucose homeostasis and platelet reactivity. This raises the possibility that platelets may play a role in the regulation of metabolism. Pancreatic ß cells are the central regulators of systemic glucose homeostasis. Here, we show that factor(s) derived from ß cells stimulate platelet activity and platelets selectively localize to the vascular endothelium of pancreatic islets. Both depletion of platelets and ablation of major platelet adhesion or activation pathways consistently resulted in impaired glucose tolerance and decreased circulating insulin levels. Furthermore, we found platelet-derived lipid classes to promote insulin secretion and identified 20-Hydroxyeicosatetraenoic acid (20-HETE) as the main factor promoting ß cells function. Finally, we demonstrate that the levels of platelet-derived 20-HETE decline with age and that this parallels with reduced impact of platelets on ß cell function. Our findings identify an unexpected function of platelets in the regulation of insulin secretion and glucose metabolism, which promotes metabolic fitness in young individuals.


Assuntos
Células Secretoras de Insulina , Humanos , Secreção de Insulina , Insulina/metabolismo , Plaquetas , Glucose/metabolismo
4.
Biol Direct ; 18(1): 10, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922848

RESUMO

In tumor therapy anti-angiogenic approaches have the potential to increase the efficacy of a wide variety of subsequently or co-administered agents, possibly by improving or normalizing the defective tumor vasculature. Successful implementation of the concept of vascular normalization under anti-angiogenic therapy, however, mandates a detailed understanding of key characteristics and a respective scoring metric that defines an improved vasculature and thus a successful attempt. Here, we show that beyond commonly used parameters such as vessel patency and maturation, anti-angiogenic approaches largely benefit if the complex vascular network with its vessel interconnections is both qualitatively and quantitatively assessed. To gain such deeper insight the organization of vascular networks, we introduce a multi-parametric evaluation of high-resolution angiographic images based on light-sheet fluorescence microscopy images of tumors. We first could pinpoint key correlations between vessel length, straightness and diameter to describe the regular, functional and organized structure observed under physiological conditions. We found that vascular networks from experimental tumors diverted from those in healthy organs, demonstrating the dysfunctionality of the tumor vasculature not only on the level of the individual vessel but also in terms of inadequate organization into larger structures. These parameters proofed effective in scoring the degree of disorganization in different tumor entities, and more importantly in grading a potential reversal under treatment with therapeutic agents. The presented vascular network analysis will support vascular normalization assessment and future optimization of anti-angiogenic therapy.


Assuntos
Neoplasias , Neovascularização Patológica , Humanos , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Imunoterapia , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico
5.
Commun Biol ; 5(1): 176, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228644

RESUMO

G-protein-coupled receptors (GPCRs) are hypothesized to possess molecular mobility over a wide temporal range. Until now the temporal range has not been fully accessible due to the crucially limited temporal range of available methods. This in turn, may lead relevant dynamic constants to remain masked. Here, we expand this dynamic range by combining fluorescent techniques using a spot confocal setup. We decipher mobility constants of ß2-adrenergic receptor over a wide time range (nanosecond to second). Particularly, a translational mobility (10 µm²/s), one order of magnitude faster than membrane associated lateral mobility that explains membrane protein turnover and suggests a wider picture of the GPCR availability on the plasma membrane. And a so far elusive rotational mobility (1-200 µs) which depicts a previously overlooked dynamic component that, despite all complexity, behaves largely as predicted by the Saffman-Delbrück model.


Assuntos
Proteínas de Membrana , Transdução de Sinais , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Espectrometria de Fluorescência/métodos
6.
J Vis Exp ; (178)2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34958081

RESUMO

We present a protocol and workflow to perform live cell dual-color fluorescence cross-correlation spectroscopy (FCCS) combined with Förster Resonance Energy transfer (FRET) to study membrane receptor dynamics in live cells using modern fluorescence labeling techniques. In dual-color FCCS, where the fluctuations in fluorescence intensity represent the dynamic "fingerprint" of the respective fluorescent biomolecule, we can probe co-diffusion or binding of the receptors. FRET, with its high sensitivity to molecular distances, serves as a well-known "nanoruler" to monitor intramolecular changes. Taken together, conformational changes and key parameters such as local receptor concentrations and mobility constants become accessible in cellular settings. Quantitative fluorescence approaches are challenging in cells due to high noise levels and the vulnerability of the sample. Here we show how to perform this experiment, including the calibration steps using dual-color labeled ß2-adrenergic receptor (ß2AR) labeled with eGFP and SNAP-tag-TAMRA. A step-by-step data analysis procedure is provided using open-source software and templates that are easy to customize. Our guideline enables researchers to unravel molecular interactions of biomolecules in live cells in situ with high reliability despite the limited signal-to-noise levels in live cell experiments. The operational window of FRET and particularly FCCS at low concentrations allows quantitative analysis at near-physiological conditions.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Difusão , Reprodutibilidade dos Testes , Espectrometria de Fluorescência/métodos
7.
J Fluoresc ; 28(1): 29-39, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29404971

RESUMO

Single molecule detection and tracking provides at times the only possible method to observe the interactions of low numbers of biomolecules, inlcuding DNA, receptors and signal mediating proteins in living systems. However, most existing imaging methods do not enable both high sensitivity and non-invasive imaging of large specimens. In this study we report a new setup for selective plane illumination microscopy (SPIM), which enables fast imaging and single molecule tracking with the resolution of confocal microscopy and the optical penetration beyond 300 µm. We detect and report our instrumental figures of merit, control values of fluorescence properties of single nano crystals in comparison to both standard widefield configurations, and also values of nanocrystals in multicellular "fruiting bodies" of Dictyostelium, an excellent control as a model developmental system. In the Dictyostelium , we also report some of our first tracking of single nanocrystals with SPIM. The new SPIM setup represents a new technique, which enables fast single molecule imaging and tracking in living systems.

8.
J Fluoresc ; 28(1): 29-39, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21975517

RESUMO

Single molecule detection and tracking provides at times the only possible method to observe the interactions of low numbers of biomolecules, inlcuding DNA, receptors and signal mediating proteins in living systems. However, most existing imaging methods do not enable both high sensitivity and non-invasive imaging of large specimens. In this study we report a new setup for selective plane illumination microscopy (SPIM), which enables fast imaging and single molecule tracking with the resolution of confocal microscopy and the optical penetration beyond 300 µm. We detect and report our instrumental figures of merit, control values of fluorescence properties of single nano crystals in comparison to both standard widefield configurations, and also values of nanocrystals in multicellular "fruiting bodies" of Dictyostelium, an excellent control as a model developmental system. In the Dictyostelium , we also report some of our first tracking of single nanocrystals with SPIM. The new SPIM setup represents a new technique, which enables fast single molecule imaging and tracking in living systems.

9.
Cytometry A ; 93(3): 305-313, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28544333

RESUMO

The spleen selectively removes cells with intracellular inclusions, for example, detached nuclear fragments in circulating erythrocytes, called Howell-Jolly Bodies (HJBs). With absent or deficient splenic function HJBs appear in the peripheral blood and can be used as a simple and non-invasive risk-indicator for fulminant potentially life-threatening infection after spleenectomy. However, it is still under debate whether counting of the rare HJBs is a reliable measure of splenic function. Investigating HJBs in premature erythrocytes from patients during radioiodine therapy gives about 10 thousand times higher HJB counts than in blood smears. However, we show that there is still the risk of false-positive results by unspecific nuclear remnants in the prepared samples that do not originate from HJBs, but from cell debris residing above or below the cell. Therefore, we present a method to improve accuracy of image-based tests that can be performed even in non-specialized medical institutions. We show how to selectively label HJB-like clusters in human blood samples and how to only count those that are undoubtedly inside the cell. We found a "critical distance" dcrit referring to a relative HJB-Cell distance that true HJBs do not exceed. To rule out false-positive counts we present a simple inside-outside-rule based on dcrit -a robust threshold that can be easily assessed by combining conventional 2D imaging and straight-forward image analysis. Besides data based on fluorescence imaging, simulations of randomly distributed HJB-like objects on realistically modelled cell objects demonstrate the risk and impact of biased counting in conventional analysis. © 2017 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of ISAC.


Assuntos
Inclusões Eritrocíticas/fisiologia , Eritrócitos/citologia , Processamento de Imagem Assistida por Computador/métodos , Imagem Óptica/mortalidade , Baço/metabolismo , Humanos , Radioisótopos do Iodo/efeitos adversos , Microscopia Confocal/métodos , Modelos Biológicos
10.
Nat Commun ; 8(1): 127, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743899

RESUMO

In mammals, megakaryocytes (MKs) in the bone marrow (BM) produce blood platelets, required for hemostasis and thrombosis. MKs originate from hematopoietic stem cells and are thought to migrate from an endosteal niche towards the vascular sinusoids during their maturation. Through imaging of MKs in the intact BM, here we show that MKs can be found within the entire BM, without a bias towards bone-distant regions. By combining in vivo two-photon microscopy and in situ light-sheet fluorescence microscopy with computational simulations, we reveal surprisingly slow MK migration, limited intervascular space, and a vessel-biased MK pool. These data challenge the current thrombopoiesis model of MK migration and support a modified model, where MKs at sinusoids are replenished by sinusoidal precursors rather than cells from a distant periostic niche. As MKs do not need to migrate to reach the vessel, therapies to increase MK numbers might be sufficient to raise platelet counts.Megakaryocyte maturation is thought to occur as the cells migrate from a vessel-distant (endosteal) niche to the vessel within the bone. Here, the authors show that megakaryocytes represent largely sessile cells in close contact with the vasculature and homogeneously distributed in the bone marrow.


Assuntos
Vasos Sanguíneos/fisiologia , Medula Óssea/irrigação sanguínea , Movimento Celular/fisiologia , Megacariócitos/fisiologia , Trombopoese/fisiologia , Animais , Plaquetas/citologia , Plaquetas/metabolismo , Plaquetas/fisiologia , Vasos Sanguíneos/metabolismo , Medula Óssea/metabolismo , Movimento Celular/genética , Células Cultivadas , Microscopia Intravital , Megacariócitos/citologia , Megacariócitos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Adesividade Plaquetária/genética , Adesividade Plaquetária/fisiologia , Trombopoese/genética
11.
Proc Natl Acad Sci U S A ; 114(12): E2420-E2429, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28255084

RESUMO

In recent years, the myocardium has been rediscovered under the lenses of immunology, and lymphocytes have been implicated in the pathogenesis of cardiomyopathies with different etiologies. Aging is an important risk factor for heart diseases, and it also has impact on the immune system. Thus, we sought to determine whether immunological activity would influence myocardial structure and function in elderly mice. Morphological, functional, and molecular analyses revealed that the age-related myocardial impairment occurs in parallel with shifts in the composition of tissue-resident leukocytes and with an accumulation of activated CD4+ Foxp3- (forkhead box P3) IFN-γ+ T cells in the heart-draining lymph nodes. A comprehensive characterization of different aged immune-deficient mouse strains revealed that T cells significantly contribute to age-related myocardial inflammation and functional decline. Upon adoptive cell transfer, the T cells isolated from the mediastinal lymph node (med-LN) of aged animals exhibited increased cardiotropism, compared with cells purified from young donors or from other irrelevant sites. Nevertheless, these cells caused rather mild effects on cardiac functionality, indicating that myocardial aging might stem from a combination of intrinsic and extrinsic (immunological) factors. Taken together, the data herein presented indicate that heart-directed immune responses may spontaneously arise in the elderly, even in the absence of a clear tissue damage or concomitant infection. These observations might shed new light on the emerging role of T cells in myocardial diseases, which primarily affect the elderly population.


Assuntos
Envelhecimento/imunologia , Linfócitos T CD4-Positivos/imunologia , Miocárdio/imunologia , Transferência Adotiva , Animais , Coração/crescimento & desenvolvimento , Humanos , Linfonodos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
J Biomed Opt ; 20(10): 106006, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26469565

RESUMO

Planar illumination imaging allows for illumination of the focal plane orthogonal to the imaging axis in various light forms and is advantageous for high optical sectioning, high imaging speed, low light exposure, and inherently deeper imaging penetration into small organisms and tissue sections. The drawback of the technique is the low inherent resolution, which can be overcome by the incorporation of a dual-sheet stimulated emission depletion (STED) beam to the planar illumination excitation. Our initiative is the implementation of STED into the planar illumination microscope for enhanced resolution. We demonstrate some of our implementations. The depletion of STED in the microscope follows an inverse square root saturation for up to 2.5-fold axial resolution improvements with both high and low numerical aperture imaging objectives.


Assuntos
Aumento da Imagem/instrumentação , Iluminação/instrumentação , Microscopia de Fluorescência/instrumentação , Microscopia/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Cell Signal ; 27(9): 1781-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26004136

RESUMO

Colon cancer is one of the most common tumors in the human population. Recent studies have shown a reduced risk for colon cancer in patients given the antidepressant fluoxetine (FLX). The exact mechanism by which FLX might protect from colon cancer remains however controversial. Here, FLX reduced the development of different colon tumor xenografts, as well as proliferation in hypoxic tumor areas within them. FLX treatment also decreased microvessel numbers in tumors. Although FLX did not increase serum and tumor glucose levels as much as the colon chemotherapy gold standard Fluorouracil did, lactate levels were significantly augmented within tumors by FLX treatment. The gene expression of the MCT4 lactate transporter was significantly downregulated. Total protein amounts from the third and fifth mitochondrial complexes were significantly decreased by FLX in tumors. Cell culture experiments revealed that FLX reduced the mitochondrial membrane potential significantly and disabled the reactive oxygen species production of the third mitochondrial complex. Furthermore, FLX arrested hypoxic colon tumor cells in the G0/G1 phase of the cell-cycle. The expression of key cell-cycle-related checkpoint proteins was enhanced in cell culture and in vivo experiments. Therefore, we suggest FLX impairs energy generation, cell cycle progression and proliferation in tumor cells, especially under condition of hypoxia. This then leads to reduced microvessel formation and tumor shrinkage in xenograft models.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Fluoxetina/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Animais , Células CACO-2 , Hipóxia Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Fase G1/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Clin Invest ; 122(12): 4439-46, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23143304

RESUMO

Understanding the spatiotemporal changes of cellular and molecular events within an organism is crucial to elucidate the complex immune processes involved in infections, autoimmune disorders, transplantation, and neoplastic transformation and metastasis. Here we introduce a novel multicolor light sheet fluorescence microscopy (LSFM) approach for deciphering immune processes in large tissue specimens on a single-cell level in 3 dimensions. We combined and optimized antibody penetration, tissue clearing, and triple-color illumination to create a method for analyzing intact mouse and human tissues. This approach allowed us to successfully quantify changes in expression patterns of mucosal vascular addressin cell adhesion molecule-1 (MAdCAM-1) and T cell responses in Peyer's patches following stimulation of the immune system. In addition, we employed LSFM to map individual T cell subsets after hematopoietic cell transplantation and detected rare cellular events. Thus, we present a versatile imaging technology that should be highly beneficial in biomedical research.


Assuntos
Imunidade Adaptativa , Imageamento Tridimensional/métodos , Animais , Doença Enxerto-Hospedeiro/patologia , Transplante de Células-Tronco Hematopoéticas , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Análise de Célula Única , Imagem Corporal Total
15.
Biophys J ; 100(8): L43-5, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21504720

RESUMO

We demonstrate the first, to our knowledge, integration of stimulated emission depletion (STED) with selective plane illumination microscopy (SPIM). Using this method, we were able to obtain up to 60% improvements in axial resolution with lateral resolution enhancements in control samples and zebrafish embryos. The integrated STED-SPIM method combines the advantages of SPIM with the resolution enhancement of STED, and thus provides a method for fast, high-resolution imaging with >100 µm deep penetration into biological tissue.


Assuntos
Iluminação/métodos , Microscopia/métodos , Animais , Embrião não Mamífero , Fenômenos Ópticos , Peixe-Zebra/embriologia
16.
Biochem Biophys Res Commun ; 390(3): 722-7, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-19833091

RESUMO

Single-molecule detection and tracking is important for observing biomolecule interactions in the microenvironment. Here we report selective plane illumination microscopy (SPIM) with single-molecule detection in living organisms, which enables fast imaging and single-molecule tracking and optical penetration beyond 300 microm. We detected single nanocrystals in Drosophila larvae and zebrafish embryo. We also report our first tracking of single quantum dots during zebrafish development, which displays a transition from flow to confined motion prior to the blastula stage. The new SPIM setup represents a new technique, which enables fast single-molecule imaging and tracking in living systems.


Assuntos
Imagem Molecular/métodos , Pontos Quânticos , Animais , Drosophila melanogaster/química , Drosophila melanogaster/metabolismo , Embrião não Mamífero/química , Embrião não Mamífero/metabolismo , Larva/química , Larva/metabolismo , Iluminação , Microscopia/métodos , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
17.
PLoS Pathog ; 5(8): e1000558, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19696919

RESUMO

Prion diseases are fatal neurodegenerative disorders causing motor dysfunctions, dementia and neuropathological changes such as spongiosis, astroglyosis and neuronal loss. The chain of events leading to the clinical disease and the role of distinct brain areas are still poorly understood. The role of nervous system integrity and axonal properties in prion pathology are still elusive. There is no evidence of both the functional axonal impairments in vivo and their connection with prion disease. We studied the functional axonal impairments in motor neurons at the onset of clinical prion disease using the combination of tracing as a functional assay for axonal transport with immunohistochemistry experiments. Well-established and novel confocal and ultramicroscopy techniques were used to image and quantify labeled neurons. Despite profound differences in the incubation times, 30% to 45% of neurons in the red nucleus of different mouse lines showed axonal transport impairments at the disease onset bilaterally after intracerebral prion inoculation and unilaterally -- after inoculation into the right sciatic nerve. Up to 94% of motor cortex neurons also demonstrated transport defects upon analysis by alternative imaging methods. Our data connect axonal transport impairments with disease symptoms for different prion strains and inoculation routes and establish further insight on the development of prion pathology in vivo. The alterations in localization of the proteins involved in the retrograde axonal transport allow us to propose a mechanism of transport disruption, which involves Rab7-mediated cargo attachment to the dynein-dynactin pathway. These findings suggest novel targets for therapeutic and diagnostic approaches in the early stages of prion disease.


Assuntos
Transporte Axonal/fisiologia , Neurônios Motores/metabolismo , Doenças Priônicas/metabolismo , Amidinas/metabolismo , Animais , Imuno-Histoquímica , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Córtex Motor/metabolismo , Córtex Motor/patologia , Neurônios Motores/patologia , Neurônios Motores/ultraestrutura , Proteínas do Tecido Nervoso/metabolismo , Proteínas PrPSc/metabolismo , Doenças Priônicas/patologia , Núcleo Rubro/metabolismo , Núcleo Rubro/fisiopatologia , Nervo Isquiático/metabolismo , Nervo Isquiático/ultraestrutura , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
18.
Biophys J ; 96(8): 3390-8, 2009 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-19383482

RESUMO

The functional imaging of neuronal circuits of the central nervous system is crucial for phenotype screenings or investigations of defects in neurodegenerative disorders. Current techniques yield either low penetration depth, yield poor resolution, or are restricted by the age of the animals. Here, we present a novel ultramicroscopy protocol for fluorescence imaging and three-dimensional reconstruction in the central nervous system of adult mice. In combination with tracing as a functional assay for axonal transport, retrogradely labeled descending motor neurons were visualized with >4 mm penetration depth. The analysis of the motor cortex shortly before the onset of clinical prion disease revealed that >80% neurons have functional impairments in axonal transport. Our study provides evidence that prion disease is associated with severe axonal transport defects in the cortical motor neurons and suggests a novel mechanism for prion-mediated neurodegeneration.


Assuntos
Transporte Axonal , Axônios/ultraestrutura , Córtex Motor/fisiopatologia , Neurônios Motores/fisiologia , Doenças Priônicas/fisiopatologia , Animais , Axônios/fisiologia , Proteínas de Ligação a DNA , Imageamento Tridimensional/métodos , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia de Fluorescência por Excitação Multifotônica , Córtex Motor/patologia , Córtex Motor/ultraestrutura , Neurônios Motores/ultraestrutura , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Inclusão em Parafina , Doenças Priônicas/patologia
19.
Blood ; 112(3): 619-25, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18492951

RESUMO

While the extravasation cascade of lymphocytes is well characterized, data on their intraepithelial positioning and morphology are scant. However, the latter process is presumably crucial for many immune functions. Integrin alpha(E)(CD103)beta(7) has previously been implicated in epithelial retention of some T cells through binding to E-cadherin. Our current data suggest that alpha(E)(CD103)beta(7) also determines shape and motility of some lymphocytes. Time-lapse microscopy showed that wild-type alpha(E)(CD103)beta(7) conferred the ability to form cell protrusions/filopodia and to move in an amoeboid fashion on E-cadherin, an activity that was abrogated by alpha(E)(CD103)beta(7)-directed antibodies or cytochalasin D. The alpha(E)-dependent motility was further increased (P < .001) when point-mutated alpha(E)(CD103) locked in a constitutively active conformation was expressed. Moreover, different yellow fluorescent protein-coupled alpha(E)(CD103) species demonstrated that the number and length of filopodia extended toward purified E-cadherin, cocultured keratinocytes, cryostat-cut skin sections, or epidermal sheets depended on functional alpha(E)(CD103). The in vivo relevance of these findings was demonstrated by wild-type dendritic epidermal T cells (DETCs), which showed significantly more dendrites and spanned larger epidermal areas as compared with DETCs of alpha(E)(CD103)-deficient mice (P < .001). Thus, integrin alpha(E)(CD103)beta(7) is not only involved in epithelial retention, but also in shaping and proper intraepithelial morphogenesis of some leukocytes.


Assuntos
Movimento Celular , Forma Celular , Integrinas/fisiologia , Leucócitos/citologia , Animais , Caderinas/metabolismo , Técnicas de Cocultura , Células Epidérmicas , Humanos , Células K562 , Queratinócitos/citologia , Ligantes , Camundongos , Pseudópodes , Linfócitos T/citologia
20.
Biochim Biophys Acta ; 1773(12): 1759-73, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18006160

RESUMO

Smad proteins are the major signal transducers for the Transforming Growth Factor superfamily of cytokines and their serine/threonine kinase receptors. Smads mediate the signal from the membrane into the nucleus. Bone Morphogenetic Protein-4 stimulates phosphorylation of Smad1, which interacts with Smad4. This complex translocates into the nucleus and regulates transcription of target genes. Here, we report our development of cellular fluorescence biosensors for direct visualization of Smad signaling in live mammalian cells. Fluorescence resonance energy transfer between cyan and yellow fluorescent proteins fused to the Smad1 and Smad4 proteins was used to unravel the temporal aspects of BMP/Smad signaling. A rate-limiting delay of 2-5 min occurred between BMP activation and Smad1 activity. A similar delay was observed in the Smad1/Smad4 complexation. Further experimentation indicated that the delay is dependent on the MH1 domain and linker of Smad1. These results give new insights into the dynamics of the BMP receptor -Smad1/4 signaling process and provide a new tool for studying Smads.


Assuntos
Técnicas Biossensoriais/métodos , Proteínas Morfogenéticas Ósseas/farmacologia , Transferência Ressonante de Energia de Fluorescência/métodos , Transdução de Sinais , Proteína Smad1/metabolismo , Proteína Smad4/metabolismo , Sequência de Aminoácidos , Animais , Proteína Morfogenética Óssea 4 , Células COS , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Chlorocebus aethiops , Células HeLa , Humanos , Cinética , Proteínas Luminescentes/metabolismo , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Proteína Smad1/química , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...