Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 9(10): 1688-1696, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37735253

RESUMO

In cereal crops, environmental fluctuations affect different physiological processes during various developmental phases associated with the formation of yield components. Because these effects are coupled with cultivar-specific phenology, studies investigating environmental responses in different cultivars can give contradictory results regarding key phases impacting yield performance. To dissect how genotype-by-environment interactions affect grain yield in winter wheat, we estimated the sensitivities of yield components to variation in global radiation, temperature and precipitation in 220 cultivars across 81 time-windows ranging from double ridge to seed desiccation. Environmental sensitivity responses were prominent in the short-term physiological subphases of spike and kernel development, causing phenologically dependent, stage-specific genotype-by-environment interactions. Here we reconcile contradicting findings from previous studies and show previously undetected effects; for example, the positive impact of global radiation on kernel weight during canopy senescence. This deep insight into the three-way interactions between phenology, yield formation and environmental fluctuations provides comprehensive new information for breeding and modelling cereal crops.


Assuntos
Interação Gene-Ambiente , Triticum , Melhoramento Vegetal , Genótipo , Grão Comestível/genética , Produtos Agrícolas
2.
Sci Rep ; 10(1): 20374, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230232

RESUMO

Breeding has substantially increased the genetic yield potential, but fungal pathogens are still major constraints for wheat production. Therefore, breeding success for resistance and its impact on yield were analyzed on a large panel of winter wheat cultivars, representing breeding progress in Germany during the last decades, in large scale field trials under different fungicide and nitrogen treatments. Results revealed a highly significant effect of genotype (G) and year (Y) on resistances and G × Y interactions were significant for all pathogens tested, i.e. leaf rust, strip rust, powdery mildew and Fusarium head blight. N-fertilization significantly increased the susceptibility to biotrophic and hemibiotrophic pathogens. Resistance was significantly improved over time but at different rates for the pathogens. Although the average progress of resistance against each pathogen was higher at the elevated N level in absolute terms, it was very similar at both N levels on a relative basis. Grain yield was increased significantly over time under all treatments but was considerably higher without fungicides particularly at high N-input. Our results strongly indicate that wheat breeding resulted in a substantial increase of grain yield along with a constant improvement of resistance to fungal pathogens, thereby contributing to an environment-friendly and sustainable wheat production.


Assuntos
Resistência à Doença/genética , Melhoramento Vegetal/métodos , Doenças das Plantas/genética , Imunidade Vegetal/genética , Triticum/genética , Basidiomycota/efeitos dos fármacos , Basidiomycota/crescimento & desenvolvimento , Basidiomycota/patogenicidade , Cruzamentos Genéticos , Grão Comestível , Fungicidas Industriais/farmacologia , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Fusarium/patogenicidade , Genótipo , Alemanha , Humanos , Nitrogênio/farmacologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Estações do Ano , Triticum/imunologia , Triticum/microbiologia
3.
Theor Appl Genet ; 132(9): 2707-2719, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31254025

RESUMO

KEY MESSAGE: Exploring large genomic data sets based on the latest reference genome assembly identifies the rice ortholog APO1 as a key candidate gene for number of rachis nodes per spike in wheat. Increasing grain yield in wheat is a key breeding objective worldwide. Several component traits contribute to grain yield with spike attributes being among the most important. In this study, we performed a genome-wide association analysis for 12 grain yield and component traits measured in field trials with contrasting agrochemical input levels in a panel of 220 hexaploid winter wheats. A highly significant, environmentally consistent QTL was detected for number of rachis nodes per rachis (NRN) on chromosome 7AL. The five most significant SNPs formed a strong linkage disequilibrium (LD) block and tagged a 2.23 Mb region. Using pairwise LD for exome SNPs located across this interval in a large worldwide hexaploid wheat collection, we reduced the genomic region for NRN to a 258 Kb interval containing four of the original SNP and six high-confidence genes. The ortholog of one (TraesCS7A01G481600) of these genes in rice was ABBERANT PANICLE ORGANIZATION1 (APO1), which is known to have significant effects on panicle attributes. The APO1 ortholog was the best candidate for NRN and was associated with a 115 bp promoter deletion and two amino acid (C47F and D384 N) changes. Using a large worldwide collection of tetraploid and hexaploid wheat, we found 12 haplotypes for the NRN QTL and evidence for positive enrichment of two haplotypes in modern germplasm. Comparison of five QTL haplotypes in Australian yield trials revealed their relative, context-dependent contribution to grain yield. Our study provides diagnostic SNPs and value propositions to support deployment of the NRN trait in wheat breeding.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/genética , Proteínas de Plantas/genética , Locos de Características Quantitativas , Triticum/crescimento & desenvolvimento , Triticum/genética , Ligação Genética , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Haplótipos , Desequilíbrio de Ligação , Desenvolvimento Vegetal , Polimorfismo de Nucleotídeo Único
4.
Nat Plants ; 5(7): 706-714, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209285

RESUMO

The world cropping area for wheat exceeds that of any other crop, and high grain yields in intensive wheat cropping systems are essential for global food security. Breeding has raised yields dramatically in high-input production systems; however, selection under optimal growth conditions is widely believed to diminish the adaptive capacity of cultivars to less optimal cropping environments. Here, we demonstrate, in a large-scale study spanning five decades of wheat breeding progress in western Europe, where grain yields are among the highest worldwide, that breeding for high performance in fact enhances cultivar performance not only under optimal production conditions but also in production systems with reduced agrochemical inputs. New cultivars incrementally accumulated genetic variants conferring favourable effects on key yield parameters, disease resistance, nutrient use efficiency, photosynthetic efficiency and grain quality. Combining beneficial, genome-wide haplotypes could help breeders to more efficiently exploit available genetic variation, optimizing future yield potential in more sustainable production systems.


Assuntos
Agroquímicos/farmacologia , Triticum/crescimento & desenvolvimento , Agroquímicos/análise , Genoma de Planta , Haplótipos , Fotossíntese , Melhoramento Vegetal , Sementes/química , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/metabolismo , Triticum/efeitos dos fármacos , Triticum/genética , Triticum/metabolismo
6.
Theor Appl Genet ; 132(5): 1335-1350, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30659305

RESUMO

KEY MESSAGE: The novel Rfm3 locus causing undesired fertility restoration in the msm1 cytoplasm of winter barley is located on the short arm of chromosome 6H. Undesired fertility restoration of cytoplasmic male sterile (CMS) mother lines in absence of the functional Rfm1 restorer gene is a significant problem for hybrid breeding in winter barley. Here, we describe that a novel restorer locus on the short arm of chromosome 6H, designated Rfm3, is closely linked to two mitochondrial transcription termination factor family (mTERF) protein coding genes. Genome-wide association studies in a multiparental mapping population revealed that two of the most significantly associated markers are located very close to these genes, with one marker lying directly within one mTERF gene sequence. Sequences of the candidate genes in the parental lines, segregating individuals and an independent set of breeding lines clearly revealed haplotypes discriminating completely sterile, partially fertile and Rfm1-restorer lines. The haplotypes segregate for several single nucleotide polymorphisms, a 6 bp insertion-deletion (InDel) polymorphism and another 2 bp InDel. CMS-unstable genotypes carrying haplotypes associated with undesired fertility restoration showed significantly higher grain setting on bagged spikes when plants were subjected to elevated temperatures during anthesis, indicating a temperature influence on pollen fertility. SNPs associated with desirable Rfm3 haplotypes can be implemented in marker-assisted selection of stable CMS mother lines.


Assuntos
Genes de Plantas , Hordeum/fisiologia , Cruzamento , Cromossomos de Plantas , Fertilidade/genética , Haplótipos , Hordeum/genética , Locos de Características Quantitativas
7.
Front Plant Sci ; 9: 1728, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30568663

RESUMO

In the majority of wheat growing areas worldwide, the incidence of drought stress has increased significantly resulting in a negative impact on plant development and grain yield. Arbuscular mycorrhizal symbiosis is known to improve drought stress tolerance of wheat. However, quantitative trait loci (QTL) involved in the response to drought stress conditions in the presence of mycorrhizae are largely unknown. Therefore, a diverse set consisting of 94 bread wheat genotypes was phenotyped under drought stress and well watered conditions in the presence and absence of mycorrhizae. Grain yield and yield components, drought stress related traits as well as response to mycorrhizae were assessed. In parallel, wheat accessions were genotyped by using the 90k iSelect chip, resulting in a set of 15511 polymorphic and mapped SNP markers, which were used for genome-wide association studies (GWAS). In general, drought stress tolerance of wheat was significantly increased in the presence of mycorrhizae compared to drought stress tolerance in the absence of mycorrhizae. However, genotypes differed in their response to mycorrhizae under drought stress conditions. Several QTL regions on different chromosomes were detected associated with grain yield and yield components under drought stress conditions. Furthermore, two genome regions on chromosomes 3D and 7D were found to be significantly associated with the response to mycorrhizae under drought stress conditions. Overall, the results reveal that inoculation of wheat with mycorrhizal fungi significantly improves drought stress tolerance and that QTL regions associated with the response to mycorrhizae under drought stress conditions exist in wheat. Further research is necessary to validate detected QTL regions. However, this study may be the starting point for the identification of candidate genes associated with drought stress tolerance and response to mycorrhizae under drought stress conditions. Maybe in future, these initial results will help to contribute to use mycorrhizal fungi effectively in agriculture and combine new approaches i.e., use of genotypic variation in response to mycorrhizae under drought stress conditions with existing drought tolerance breeding programs to develop new drought stress tolerant genotypes.

8.
Plant Methods ; 14: 103, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30473724

RESUMO

BACKGROUND: Fungal pathogens like Fusarium graminearum can cause severe yield losses and mycotoxin contamination of food and feed worldwide. We recently showed its ability to systemically colonize wheat via root infection. However, the molecular response of wheat to Fusarium root rot (FRR) infection and systemic spread is still unknown. As a molecular camera, mass spectrometry (MS) imaging combines label-free and multiplex metabolite profiling with histopathology. RESULTS: Atmospheric-pressure (AP)-SMALDI-MS imaging was combined with optical microscopy to study wheat-F. graminearum interaction at the root-shoot junction, which is a crucial line of defense against a pathogen that can invade all distal plant parts. To scope the functional, temporal and local aspects of FRR disease spread, metabolic changes were simultaneous visualized in diseased and healthy stem bases of the resistant cultivar Florence-Aurore at 10, 14 and 21 days after root inoculation. Histological information was used to identify disease relevant tissues and to assist the interpretation of molecular images. Detected mycotoxin compounds secreted by F. graminearum showed a route of stem infection that was consistent with observations made by microscopy. The outer epidermis and vasculature of leaf sheath were, at different disease stages, identified as prominent sites of pathogen migration and wheat protection. Wheat metabolites mapped to these relatively small tissues indicated cell wall strengthening and antifungal activity as direct defenses as well as conservation in the wheat reactions to F. graminearum diseases that affect different plant organs. CONCLUSIONS: AP-SMALDI-MS imaging at high spatial resolution is a versatile technique that can be applied to basic and applied aspects of agricultural research. Combining the technology with optical microscopy was found to be a powerful tool to gain in-depth information on almost unknown crop disease. Moreover, the approach allowed studying metabolism at the host-pathogen interface. The results provide important hints to an understanding of the complex spatio-temporal organization of plant resistance. Defense-on-demand responses to pathogen ingress were found, which provide opportunities for future research towards an improved resistance that does not negatively impact yield development in the field by saving plant resources and, moreover, may control different Fusarium diseases.

9.
Sci Rep ; 8(1): 13153, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177750

RESUMO

The ongoing global intensification of wheat production will likely be accompanied by a rising pressure of Fusarium diseases. While utmost attention was given to Fusarium head blight (FHB) belowground plant infections of the pathogen have largely been ignored. The current knowledge about the impact of soil borne Fusarium infection on plant performance and the underlying genetic mechanisms for resistance remain very limited. Here, we present the first large-scale investigation of Fusarium root rot (FRR) resistance using a diverse panel of 215 international wheat lines. We obtained data for a total of 21 resistance-related traits, including large-scale Real-time PCR experiments to quantify fungal spread. Association mapping and subsequent haplotype analyses discovered a number of highly conserved genomic regions associated with resistance, and revealed a significant effect of allele stacking on the stembase discoloration. Resistance alleles were accumulated in European winter wheat germplasm, implying indirect prior selection for improved FRR resistance in elite breeding programs. Our results give first insights into the genetic basis of FRR resistance in wheat and demonstrate how molecular parameters can successfully be explored in genomic prediction. Ongoing work will help to further improve our understanding of the complex interactions of genetic factors influencing FRR resistance.


Assuntos
Resistência à Doença/genética , Fusarium/patogenicidade , Genoma de Planta/imunologia , Doenças das Plantas/genética , Triticum/genética , Alelos , Mapeamento Cromossômico , Cor , Fusarium/fisiologia , Haplótipos , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Locos de Características Quantitativas , Característica Quantitativa Herdável , Triticum/imunologia , Triticum/microbiologia
10.
Phytopathology ; 108(5): 602-616, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29256831

RESUMO

Fusarium graminearum is a major pathogen of wheat causing Fusarium head blight (FHB). Its ability to colonize wheat via seedling root infection has been reported recently. Our previous study on Fusarium root rot (FRR) has disclosed histological characteristics of pathogenesis and pathogen defense that mirror processes of spike infection. Therefore, it would be interesting to understand whether genes relevant for FHB resistance are induced in roots. The concept of similar-acting defense mechanisms provides a basis for research at broad Fusarium resistance in crop plants. However, molecular defense responses involved in FRR as well as their relation to spike resistance are unknown. To test the hypothesis of a conserved defense response, a candidate gene expression study was conducted to test the activity of selected prominent FHB defense-related genes in seedling roots, adult plant roots, spikes, and shoots. FRR was examined at seedling and adult plant stages to assess age-related pattern of disease and pathogen resistance. This study offers first evidence for a significant genetic overlap in root and spike defense responses, both in local and distant tissues. The results point to plant development-specific rather than organ-specific determinants of resistance, and suggest roots as an interesting model for studies on wheat-Fusarium interactions.


Assuntos
Ciclopentanos/metabolismo , Resistência à Doença/genética , Oxilipinas/metabolismo , Doenças das Plantas/genética , Tricotecenos/metabolismo , Triticum/genética , Fusarium/patogenicidade , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Triticum/microbiologia
12.
New Phytol ; 215(2): 779-791, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28517039

RESUMO

Bread wheat (Triticum aestivum) is a major staple food and therefore of prime importance for feeding the Earth's growing population. Mycorrhiza is known to improve plant growth, but although extensive knowledge concerning the interaction between mycorrhizal fungi and plants is available, genotypic differences concerning the ability of wheat to form mycorrhizal symbiosis and quantitative trait loci (QTLs) involved in mycorrhization are largely unknown. Therefore, a diverse set of 94 bread wheat genotypes was evaluated with regard to root colonization by arbuscular mycorrhizal fungi. In order to identify genomic regions involved in mycorrhization, these genotypes were analyzed using the wheat 90k iSelect chip, resulting in 17 823 polymorphic mapped markers, which were used in a genome-wide association study. Significant genotypic differences (P < 0.0001) were detected in the ability to form symbiosis and 30 significant markers associated with root colonization, representing six QTL regions, were detected on chromosomes 3A, 4A and 7A, and candidate genes located in these QTL regions were proposed. The results reported here provide key insights into the genetics of root colonization by mycorrhizal fungi in wheat.


Assuntos
Micorrizas/genética , Raízes de Plantas/microbiologia , Locos de Características Quantitativas , Triticum/genética , Triticum/microbiologia , Estudo de Associação Genômica Ampla , Genótipo , Desequilíbrio de Ligação , Raízes de Plantas/genética , Polimorfismo de Nucleotídeo Único , Simbiose/genética
13.
Theor Appl Genet ; 129(8): 1507-17, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27160855

RESUMO

KEY MESSAGE: SNP markers were developed for the OWBM resistance gene Sm1 that will be useful for MAS. The wheat Sm1 region is collinear with an inverted syntenic interval in B. distachyon. Orange wheat blossom midge (OWBM, Sitodiplosis mosellana Géhin) is an important insect pest of wheat (Triticum aestivum) in many growing regions. Sm1 is the only described OWBM resistance gene and is the foundation of managing OWBM through host genetics. Sm1 was previously mapped to wheat chromosome arm 2BS relative to simple sequence repeat (SSR) markers and the dominant, sequence characterized amplified region (SCAR) marker WM1. The objectives of this research were to saturate the Sm1 region with markers, develop improved markers for marker-assisted selection (MAS), and examine the synteny between wheat, Brachypodium distachyon, and rice (Oryza sativa) in the Sm1 region. The present study mapped Sm1 in four populations relative to single nucleotide polymorphisms (SNPs), SSRs, Diversity Array Technology (DArT) markers, single strand conformation polymorphisms (SSCPs), and the SCAR WM1. Numerous high quality SNP assays were designed that mapped near Sm1. BLAST delineated the syntenic intervals in B. distachyon and rice using gene-based SNPs as query sequences. The Sm1 region in wheat was inverted relative to B. distachyon and rice, which suggests a chromosomal rearrangement within the Triticeae lineage. Seven SNPs were tested on a collection of wheat lines known to carry Sm1 and not to carry Sm1. Sm1-flanking SNPs were identified that were useful for predicting the presence or absence of Sm1 based upon haplotype. These SNPs will be a major improvement for MAS of Sm1 in wheat breeding programs.


Assuntos
Mapeamento Cromossômico , Ligação Genética , Polimorfismo de Nucleotídeo Único , Sintenia , Triticum/genética , Animais , Brachypodium/genética , Chironomidae , DNA de Plantas/genética , Genes de Plantas , Marcadores Genéticos , Haplótipos , Oryza/genética , Fenótipo
14.
Front Plant Sci ; 7: 322, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014334

RESUMO

The Brassica napus (oilseed rape) accession 1012-98 shows a disturbed germination phenotype that was thought to be associated with its lack of testa pigmentation and thin seed coat. Here, we demonstrate that the disturbed germination and seedling development are actually due to independent mutations that disrupt the balance of hormone metabolites and their regulators in the seeds. High-throughput UPLC-MS/MS hormone profiling of seeds and seedlings before and after germination revealed that 1012-98 has a severely disturbed hormone balance with extremely atypical, excessive quantities of auxin and ABA metabolites. The resulting hypersensitivity to abscisic acid (ABA) and a corresponding increase in dormancy often results in death of the embryo after imbibition or high frequencies of disturbed, often lethal developmental phenotypes, resembling Arabidopsis mutants for the auxin regulatory factor gene ARF10 or the auxin-overproducing transgenic line iaaM-OX. Molecular cloning of Brassica ARF10 orthologs revealed four loci in normal B. napus, two derived from the Brassica A genome and two from the C genome. On the other hand, the phenotypic mutant 1012-98 exhibited amplification of C-genome BnaC.ARF10 copy number along with a chimeric allele originating from recombination between homeologous A and C genome loci which lead to minor increase of Bna.ARF10 transcription on the critical timepoint for seed germination, the indirect regulator of ABI3, the germinative inhibitor. Bna.GH3.5 expression was upregulated to conjugate free auxin to IAA-asp between 2 and 6 DAS. Functional amino acid changes were also found in important DNA binding domains of one BnaC.ARF10 locus, suggesting that regulatory changes in Bna.ARF10 are collectively responsible for the observed phenotpyes in 1012-98. To our knowledge, this study is the first to report disruption of germination and seedling development in Brassica napus caused by the crosstalk of auxin-ABA and the corresponding regulators Bna.ARF10 and Bna.GH3.5.

15.
Analyst ; 140(22): 7696-709, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26462298

RESUMO

Mass spectrometry (MS) imaging provides spatial and molecular information for a wide range of compounds. This tool can be used to investigate metabolic changes in plant physiology and environmental interactions. A major challenge in our study was to prepare tissue sections that were compatible with high spatial resolution analysis and therefore dedicated sample preparation protocols were established and optimized for the physicochemical properties of all major plant organs. We combined high spatial resolution (5 µm), in order to detect cellular features, and high mass accuracy (<2 ppm root mean square error), for molecular specificity. Mass spectrometry imaging experiments were performed in positive and negative ion mode. Changes in metabolite patterns during plant development were investigated for germination of oilseed rape. The detailed localization of more than 90 compounds allowed assignment to metabolic processes and indicated possible functions in plant tissues. The 'untargeted' nature of MS imaging allows the detection of marker compounds for the physiological status, as demonstrated for plant-pathogen interactions. Our images show excellent correlation with optical/histological examination. In contrast to previous MS imaging studies of plants, we present a complete workflow that covers multiple species, such as oilseed rape, wheat seed and rice. In addition, different major plant organs and a wide variety of compound classes were analyzed. Thus, our method could be used to develop a plant metabolite atlas as a reference to investigate systemic and local effects of pathogen infection or environmental stress.


Assuntos
Metabolômica/métodos , Oryza/metabolismo , Caules de Planta/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Triticum/metabolismo , Fusarium/isolamento & purificação , Metaboloma , Oryza/ultraestrutura , Doenças das Plantas/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura , Caules de Planta/ultraestrutura , Sementes/metabolismo , Sementes/microbiologia , Sementes/ultraestrutura , Triticum/microbiologia , Triticum/ultraestrutura
16.
Mol Plant Microbe Interact ; 28(12): 1288-303, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26325125

RESUMO

Fusarium graminearum is one of the most common and potent fungal pathogens of wheat (Triticum aestivum), known for causing devastating spike infections and grain yield damage. F. graminearum is a typical soil-borne pathogen that builds up during consecutive cereal cropping. Speculation on systemic colonization of cereals by F. graminearum root infection have long existed but have not been proven. We have assessed the Fusarium root rot disease macroscopically in a diverse set of 12 wheat genotypes and microscopically in a comparative study of two genotypes with diverging responses. Here, we show a 'new' aspect of the F. graminearum life cycle, i.e., the head blight fungus uses a unique root-infection strategy with an initial stage typical for root pathogens and a later stage typical for spike infection. Root colonization negatively affects seedling development and leads to systemic plant invasion by tissue-adapted fungal strategies. Another major outcome is the identification of partial resistance to root rot. Disease severity assessments and histological examinations both demonstrated three distinct disease phases that, however, proceeded differently in resistant and susceptible genotypes. Soil-borne inoculum and root infection are considered significant components of the F. graminearum life cycle with important implications for the development of new strategies of resistance breeding and disease control.


Assuntos
Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
17.
Sci Rep ; 5: 14407, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26394547

RESUMO

Silique length (SL) and seed weight (SW) are important yield-associated traits in rapeseed (Brassica napus). Although many quantitative trait loci (QTL) for SL and SW have been identified in B. napus, comparative analysis for those QTL is seldom performed. In the present study, 20 and 21 QTL for SL and SW were identified in doubled haploid (DH) and DH-derived reconstructed F2 populations in rapeseed, explaining 55.1-74.3% and 24.4-62.9% of the phenotypic variation across three years, respectively. Of which, 17 QTL with partially or completely overlapped confidence interval on chromosome A09, were homologous with two overlapped QTL on chromosome C08 by aligning QTL confidence intervals with the reference genomes of Brassica crops. By high density selective genotyping of DH lines with extreme phenotypes, using a Brassica single-nucleotide polymorphism (SNP) array, the QTL on chromosome A09 was narrowed, and aligned into 1.14-Mb region from 30.84 to 31.98 Mb on chromosome R09 of B. rapa and 1.05-Mb region from 27.21 to 28.26 Mb on chromosome A09 of B. napus. The alignment of QTL with Brassica reference genomes revealed homologous QTL on A09 and C08 for SL. The narrowed QTL region provides clues for gene cloning and breeding cultivars by marker-assisted selection.


Assuntos
Brassica napus/genética , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Sementes/genética , Sementes/fisiologia , Brassica napus/fisiologia , Mapeamento Cromossômico , Genótipo , Polimorfismo de Nucleotídeo Único/genética
18.
Theor Appl Genet ; 128(4): 639-44, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25628163

RESUMO

KEY MESSAGE: Sclerotinia resistance was transferred into rapeseed from a wild relative of Brassica oleracea (B. incana) using hexaploids derived from crosses between B. incana and rapeseed as a bridge. A high level of resistance against Sclerotinia sclerotiorum has been documented in wild Brassica oleracea, but not in cultivated rapeseed (Brassica napus). To transfer sclerotinia resistance from a wild relative into rapeseed, a strategy was proposed using hexaploids (AACCCC) derived from crosses between the wild B. oleracea-related B. incana genotype 'C01' and the Chinese rapeseed variety 'Zhongshuang 9' as a bridge. Progenies (BC1F1) generated by backcrossing the hexaploid to 'Zhongshuang 9' could be generated with a high crossability (average 18.3 seeds per pod). Seventy-three individuals in BC1F1 were firstly screened for resistance with five molecular markers linked to the major resistance QTL on chromosome C09 in 'C01', and 11 individuals harboring resistance loci were selected to develop vegetative clones. Of these, five exhibited significantly higher resistance than 'Zhongshuang 9' and the most resistant individual was chosen to develop the BC1F2 progeny. Finally, five individual genotypes with nearly twofold higher resistance than 'Zhongshuang 9' were found among 100 BC1F2 individuals by using marker-assisted selection and resistance evaluation. Hereof, one rapeseed-type individual with 38 chromosomes and good self-fertility (15.0 ± 3.56 seeds/pod) was identified. Our results indicate that the proposed strategy is effective for transferring sclerotinia resistance from a wild relative of B. oleracea into rapeseed.


Assuntos
Ascomicetos , Brassica napus/genética , Cruzamento , Cruzamentos Genéticos , Resistência à Doença/genética , Brassica/genética , Genótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Poliploidia
19.
Plant Genome ; 8(2): eplantgenome2015.03.0013, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33228295

RESUMO

Genetic diversity represents the fundamental key to breeding success, providing the basis for breeders to select varieties with constantly improving yield performance. On the other hand, strong selection during domestication and breeding have eliminated considerable genetic diversity in the breeding pools of major crops, causing erosion of genetic potential for adaptation to emerging challenges like climate change. High-throughput genomic technologies can address this dilemma by providing detailed knowledge to characterize and replenish genetic diversity in breeding programs. In hexaploid bread wheat (Triticum aestivum L.), the staple food for 35% of the world's population, bottlenecks during allopolyploidisation followed by strong artificial selection have considerably narrowed diversity to the extent that yields in many regions appear to be unexpectedly stagnating. In this study, we used a 90,000 single nucleotide polymorphism (SNP) wheat genotyping array to assay high-frequency, polymorphic SNP markers in 460 accessions representing different phenological diversity groups from Asian, Australian, European, and North American bread wheat breeding materials. Detailed analysis of subgroup diversity at the chromosome and subgenome scale revealed highly distinct patterns of conserved linkage disequilibrium between different gene pools. The data enable identification of genome regions in most need of rejuvenation with novel diversity and provide a high-resolution molecular basis for genomic-assisted introgression of new variation into chromosome segments surrounding directionally selected metaloci conferring important adaptation and quality traits.

20.
J Appl Genet ; 55(3): 295-305, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24789682

RESUMO

A set of about 100 winter barley (Hordeum vulgare L.) cultivars, comprising diverse and economically important German barley elite germplasm released during the last six decades, was previously genotypically characterized by single nucleotide polymorphism (SNP) markers using the Illumina GoldenGate BeadArray Technology to detect associations with phenotypic data estimated in three-year field trials at 12 locations. In order to identify further associations and to obtain information on whether the marker type influences the outcome of association genetics studies, the set of winter barley cultivars was re-analyzed using Diversity Arrays Technology (DArT) markers. As with the analysis of the SNPs, only polymorphic markers present at an allele frequency >5% were included to detect associations in a mixed linear model (MLM) approach using the TASSEL software (P ≤ 0.001). The population structure and kinship matrix were estimated on 72 simple sequence repeats (SSRs) covering the whole barley genome. The respective average linkage disequilibrium (LD) analyzed with DArT markers was estimated at 5.73 cM. A total of 52 markers gave significant associations with at least one of the traits estimated which, therefore, may be suitable for marker-assisted breeding. In addition, by comparing the results to those generated using the Illumina GoldenGate BeadArray Technology, it turned out that a different number of associations for respective traits is detected, depending on the marker system. However, as only a few of the respective DArT and Illumina markers are present in a common map, no comprehensive comparison of the detected associations was feasible, but some were probably detected in the same chromosomal regions. Because of the identification of additional marker-trait associations, it may be recommended to use both marker techniques in genome-wide association studies.


Assuntos
Agricultura/métodos , Cruzamento/métodos , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Hordeum/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , DNA de Plantas/genética , Genoma de Planta , Genótipo , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...