Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 5121, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332202

RESUMO

Additive Manufacturing is transforming how researchers and industrialists look to design and manufacture chemical devices to meet their specific needs. In this work, we report the first example of a flow reactor formed via the solid-state metal sheet lamination technique, Ultrasonic Additive Manufacturing (UAM), with directly integrated catalytic sections and sensing elements. The UAM technology not only overcomes many of the current limitations associated with the additive manufacturing of chemical reactionware but it also significantly increases the functionality of such devices. A range of biologically important 1, 4-disubstituted 1, 2, 3-triazole compounds were successfully synthesised and optimised in-flow through a Cu mediated Huisgen 1, 3-dipolar cycloaddition using the UAM chemical device. By exploiting the unique properties of UAM and continuous flow processing, the device was able to catalyse the proceeding reactions whilst also providing real-time feedback for reaction monitoring and optimisation.


Assuntos
Metais , Tecnologia , Catálise , Reação de Cicloadição
2.
PLoS One ; 14(11): e0224492, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31765375

RESUMO

INTRODUCTION: Microfluidic reactionware allows small volumes of reagents to be utilized for highly controlled flow chemistry applications. By integrating these microreactors with onboard analytical systems, the devices change from passive ones to active ones, increasing their functionality and usefulness. A pressing application for these active microreactors is the monitoring of reaction progress and intermediaries with respect to time, shedding light on important information about these real-time synthetic processes. OBJECTIVE: In this multi-disciplinary study the objective was to utilise advanced digital fabrication to research metallic, active microreactors with integrated fibre optics for reaction progress monitoring of solvent based liquids, incompatible with previously researched polymer devices, in combination with on-board Ultraviolet-visible spectroscopy for real-time reaction monitoring. METHOD: A solid-state, metal-based additive manufactured system (Ultrasonic Additive Manufacturing) combined with focussed ion beam milling, that permitted the accurate embedment of delicate sensory elements directly at the point of need within aluminium layers, was researched as a method to create active, metallic, flow reactors with on-board sensing. This outcome was then used to characterise and correctly identify concentrations of UV-active water-soluble B-vitamin nicotinamide and fluorescein. A dilution series was formed from 0.01-1.75 mM; which was pumped through the research device and monitored using UV-vis spectroscopy. RESULTS: The results uniquely showed the in-situ ion milling of ultrasonically embedded optical fibres resulted in a metallic microfluidic reaction and monitoring device capable of measuring solvent solutions from 18 µM to 18 mM of nicotinamide and fluorescein, in real time. This level of accuracy highlights that the researched device and methods are capable of real-time spectrographic analysis of a range of chemical reactions outside of those possible with polymer devices.


Assuntos
Técnicas de Química Sintética/métodos , Técnicas Analíticas Microfluídicas/métodos , Análise Espectral/métodos , Alumínio/química , Técnicas de Química Sintética/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Fibras Ópticas , Solventes/química , Análise Espectral/instrumentação , Fatores de Tempo , Ondas Ultrassônicas
3.
Lab Chip ; 16(17): 3362-73, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27452498

RESUMO

The formation of smart Lab-on-a-Chip (LOC) devices featuring integrated sensing optics is currently hindered by convoluted and expensive manufacturing procedures. In this work, a series of 3D-printed LOC devices were designed and manufactured via stereolithography (SL) in a matter of hours. The spectroscopic performance of a variety of optical fibre combinations were tested, and the optimum path length for performing Ultraviolet-visible (UV-vis) spectroscopy determined. The information gained in these trials was then used in a reaction optimisation for the formation of carvone semicarbazone. The production of high resolution surface channels (100-500 µm) means that these devices were capable of handling a wide range of concentrations (9 µM-38 mM), and are ideally suited to both analyte detection and process optimisation. This ability to tailor the chip design and its integrated features as a direct result of the reaction being assessed, at such a low time and cost penalty greatly increases the user's ability to optimise both their device and reaction. As a result of the information gained in this investigation, we are able to report the first instance of a 3D-printed LOC device with fully integrated, in-line monitoring capabilities via the use of embedded optical fibres capable of performing UV-vis spectroscopy directly inside micro channels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...