Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Contrast Media Mol Imaging ; 11(6): 535-543, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27766757

RESUMO

Cellular MRI, which visualizes magnetically labelled cells (cells*), is an active research field for in vivo cell therapy and tracking. The simultaneous relaxation rate measurements (R2 *, R2 , R1 ) are the basis of a quantitative cellular MRI method proposed here. U937 cells were labelled with Molday ION Rhodamine B, a bi-functional superparamagnetic and fluorescent nanoparticle (U937*). U937* viability and proliferation were not affected in vitro. In vitro relaxometry was performed in a cell concentration range of [2.5 × 104 -108 ] cells/mL. These measurements show the existence of complementary cell concentration intervals where these rates vary linearly. The juxtaposition of these intervals delineates a wide cell concentration range over which one of the relaxation rates in a voxel of an in vivo image can be converted into an absolute cell concentration. The linear regime was found at high concentrations for R1 in the range of [106 - 2 × 108 ] cells/mL, at intermediate concentrations for R2 in [2.5 × 105 - 5 × 107 ] cells/mL and at low concentrations for R2 * in [8 × 104 - 5 × 106 ] cells/mL. In vivo relaxometry was performed in a longitudinal study, with labelled U937 cells injected into a U87 glioma mouse model. Using in vitro data, maps of in vivo U937* concentrations were obtained by converting one of the in vivo relaxation rates to cell concentration maps. MRI results were compared with the corresponding optical images of the same brains, showing the usefulness of our method to accurately follow therapeutic cell biodistribution in a longitudinal study. Results also demonstrate that the method quantifies a large range of magnetically labelled cells*. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Transplante de Células , Imageamento por Ressonância Magnética/métodos , Animais , Encéfalo/patologia , Contagem de Células , Movimento Celular , Fluorescência , Glioma/patologia , Xenoenxertos , Humanos , Magnetismo , Camundongos , Células U937/transplante
2.
ACS Nano ; 5(10): 8193-201, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-21888430

RESUMO

Quantum dots (QDs) are ideal scaffolds for the development of multimodal imaging agents, but their application in clinical diagnostics is limited by the toxicity of classical CdSe QDs. A new bimodal MRI/optical nanosized contrast agent with high gadolinium payload has been prepared through direct covalent attachment of up to 80 Gd(III) chelates on fluorescent nontoxic InP/ZnS QDs. It shows a high relaxivity of 900 mM(-1) s(-1) (13 mM(-1 )s(-1) per Gd ion) at 35 MHz (0.81 T) and 298 K, while the bright luminescence of the QDs is preserved. Eu(III) and Tb(III) chelates were also successfully grafted to the InP/ZnS QDs. The absence of energy transfer between the QD and lanthanide emitting centers results in a multicolor system. Using this convenient direct grafting strategy additional targeting ligands can be included on the QD. Here a cell-penetrating peptide has been co-grafted in a one-pot reaction to afford a cell-permeable multimodal multimeric MRI contrast agent that reports cellular localization by fluorescence and provides high relaxivity and increased tissue retention with respect to commercial contrast agents.


Assuntos
Quelantes/química , Índio/química , Índio/metabolismo , Elementos da Série dos Lantanídeos/química , Imagem Molecular/métodos , Fosfinas/química , Fosfinas/metabolismo , Pontos Quânticos , Animais , Transporte Biológico , Células CHO , Cricetinae , Cricetulus , Gadolínio/química , Imageamento por Ressonância Magnética , Fenômenos Ópticos , Compostos Organometálicos/química , Permeabilidade , Ratos , Espectrometria de Fluorescência , Sulfetos/química , Propriedades de Superfície , Compostos de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...