Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 158(19)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37194719

RESUMO

Absolute kinetics for reactions of C2H2 with a series of ∼60 individual carbon nanoparticles (NPs) from graphite, graphene, graphene oxide, carbon black, diamond, and nano-onion feedstocks were measured for temperatures (TNP) ranging from 1200 to 1700 K. All the NPs were observed to gain mass by carbon addition under conditions that varied with feedstock but with large variations in initial growth rate. Long reaction periods were studied to allow the evolution of growth rates over time to be observed. Diamond NPs were found to passivate against C2H2 addition if heated above ∼1400 K, and the highly variable initial reactivity for carbon nano-onions was found to depend on the presence of non-onion-structure surface carbon. For graphitic and carbon black NPs, three distinct growth modes were observed, correlated with the initial NP mass (Minitial). Smallest graphitic and carbon black NPs, with masses <∼25 MDa, initially grew rapidly but also passivated quickly after adding <4% of Minitial. NPs in the 20-50 MDa range also passivated but only after multiple waves of fast growth separated by periods of low reactivity, with up to ∼11% total mass gain before passivation. The largest carbon black and graphitic NPs, with Minitial >50 MDa, grew rapidly and continuously, adding up to ∼300% of Minitial with no sign of rate slowing as long as C2H2 was present. The efficiencies for C2H2 addition and etching by O2 are strongly correlated, but the correlation changes as the NPs passivate. Growth and passivation mechanisms are discussed.

2.
J Am Chem Soc ; 144(11): 4897-4912, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35261249

RESUMO

O2 oxidation and sublimation kinetics for >30 individual nanoparticles (NPs) of five different feedstocks (graphite, graphene oxide, carbon black, diamond, and nano-onion) were measured using single-NP mass spectrometry at temperatures (TNP) in the 1100-2900 K range. It was found that oxidation, studied in the 1200-1600 K range, is highly sensitive to the NP surface structure, with etching efficiencies (EEO2) varying by up to 4 orders of magnitude, whereas sublimation rates, significant only for TNP ≥ ∼1700 K, varied by only a factor of ∼3. Its sensitivity to the NP surface structure makes O2 etching a good real-time structure probe, which was used to follow the evolution of the NP surface structures over time as they were either etched or annealed at high TNP. All types of carbon NPs were found to have initial EEO2 values in the range near 10-3 Da/O2 collision, and all eventually evolved to become essentially inert to O2 (EEO2 < 10-6 Da/O2 collision); however, the dependence of EEO2 on time and mass loss was very different for NPs from different feedstocks. For example, diamond NPs evolved rapidly and monotonically toward inertness, and evolution occurred in both oxidizing and inert atmospheres. In contrast, graphite NPs evolved only under oxidizing conditions and were etched with complex time dependence, with multiple waves of fast but non-monotonic etching separated by periods of near-inertness. Possible mechanisms to account for the complex etching behavior are proposed.


Assuntos
Grafite , Nanopartículas , Diamante , Grafite/química , Cinética , Nanopartículas/química , Oxirredução , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...