Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37241307

RESUMO

Fibre-reinforced composites (FRCs) are already well established in several industrial sectors such as aerospace, automotive, plant engineering, shipbuilding and construction. The technical advantages of FRCs over metallic materials are well researched and proven. The key factors for an even wider industrial application of FRCs are the maximisation of resource and cost efficiency in the production and processing of the textile reinforcement materials. Due to its technology, warp knitting is the most productive and therefore cost-effective textile manufacturing process. In order to produce resource-efficient textile structures with these technologies, a high degree of prefabrication is required. This reduces costs by reducing the number of ply stacks, and by reducing the number of extra operations through final path and geometric yarn orientation of the preforms. It also reduces waste in post-processing. Furthermore, a high degree of prefabrication through functionalisation offers the potential to extend the application range of textile structures as purely mechanical reinforcements by integrating additional functions. So far, there is a gap in terms of an overview of the current state-of-the-art of relevant textile processes and products, which this work aims to fill. The focus of this work is therefore to provide an overview of warp knitted 3D structures.

2.
Materials (Basel) ; 16(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36984338

RESUMO

Textile reinforcements have established themselves as a convincing alternative to conventional steel reinforcements in the building industry. In contrast to ribbed steel bars that ensure a stable mechanical interlock with concrete (form fit), the bonding force of smooth carbon rovings has so far been transmitted primarily by an adhesive bonding with the concrete matrix (material fit). However, this material fit does not enable the efficient use of the mechanical load capacity of the textile reinforcement. Solutions involving surface-profiled rods promise significant improvements in the bonding behavior by creating an additional mechanical interlock with the concrete matrix. An initial analysis was carried out to determine the effect of a braided rod geometry on the bonding behavior. For this purpose, novel braided rods with defined surface profiling consisting of several carbon filament yarns were developed and characterized in their tensile and bond properties. Further fundamental examinations to determine the influence of the impregnation as well as the application of a pre-tension during its consolidation in order to minimize the rod elongation under load were carried out. The investigations showed a high potential of the impregnated surface-profiled braided rods for a highly efficient application in concrete reinforcements. Hereby, a complete impregnation of the rod with a stiff polymer improved the tensile and bonding properties significantly. Compared to unprofiled reinforcement structures, the specific bonding stress could be increased up to 500% due to the strong form-fit effect of the braided rods while maintaining the high tensile properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...