Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 12(2)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35207593

RESUMO

Simulated altitude (normobaric hypoxia, NH) is used to study physiologic hypoxia responses of altitude. However, several publications show differences in physiological responses between NH and hypobaric conditions at altitude (hypobaric hypoxia, HH). The causality for these differences is controversially discussed. One theory is that the lower air density and environmental pressure in HH compared to NH lead to lower alveolar pressure and therefore lower oxygen diffusion in the lung. We hypothesized that, if this theory is correct, due to physical laws (Hagen-Poiseuille, Boyle), resistance respectively air compression (Boyle) at expiration should be lower, expiratory flow higher, and therefore peak flow and maximum expiratory flow (MEF) 75-50 increased in hypobaric hypoxia (HH) vs. normobaric hypoxia (NH). To prove the hypothesis of differences in respiratory flow as a result of lower alveolar pressure between HH and NH, we performed spirography in NH at different simulated altitudes and the corresponding altitudes in HH. In a cross over study, 6 healthy subjects (2 f/4 m, 28.3 ± 8.2 years, BMI: 23.2 ± 1.9) performed spirography as part of spiroergometry in a normobaric hypoxic room at a simulated altitude of 2800 m and after a seven-hour hike on a treadmill (average incline 14%, average walking speed 1.6 km/h) to the simulated summit of Mauna Kea at 4200 m. After a two-month washout, we repeated the spirometry in HH on the start and top of the Mauna Kea hiking trail, HI/USA. Comparison of NH (simulated 4200 m) and HH at 4200 m resulted in increased pulmonary ventilation during exercise (VE) (11.5%, p < 0.01), breathing-frequency (7.8%, p < 0.01), peak expiratory flow PEF (13.4%, p = 0.028), and MEF50 (15.9%, p = 0.028) in HH compared to NH, whereas VO2max decreased by 2%. At 2800 m, differences were only trendy, and at no altitude were differences in volume parameters. Spirography expresses higher mid expiratory flows and peak flows in HH vs. NH. This supports the theory of lower alveolar and small airway pressure due to a lower air density resulting in a lower resistance.

2.
Front Physiol ; 8: 81, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28243206

RESUMO

Rationale: Exposures to simulated altitude (normobaric hypoxia, NH) are frequently used in preparation for mountaineering activities at real altitude (hypobaric hypoxia, HH). However, physiological responses to exercise in NH and HH may differ. Unfortunately clinically useful information on such differences is largely lacking. This study therefore compared exercise responses between a simulated hike on a treadmill in NH and a similar field hike in HH. Methods: Six subjects (four men) participated in two trials, one in a NH chamber and a second in HH at an altitude of 4,205 m on the mountain Mauna Kea. Subjects hiked in each setting for 7 h including breaks. In NH, hiking was simulated by walking on a treadmill. To achieve maximal similarity between hikes, subjects used the same nutrition, clothes, and gear weight. Measurements of peripheral oxygen saturation (SpO2), heart rate (HR) and barometrical pressure (PB)/inspired oxygen fraction (FiO2) were taken every 15 min. Acute mountain sickness (AMS) symptoms were assessed using the Lake-Louise-Score at altitudes of 2,800, 3,500, and 4,200 m. Results: Mean SpO2 values of 85.8% in NH were significantly higher compared to those of 80.2% in HH (p = 0.027). Mean HR values of 103 bpm in NH were significantly lower than those of 121 bpm in HH (p = 0.029). AMS scores did not differ significantly between the two conditions. Conclusion: Physiological responses to exercise recorded in NH are different from those provoked by HH. These findings are of clinical importance for subjects using simulated altitude to prepare for activity at real altitude. Trial registration: Registration at DRKS. (Approval No. 359/12, Trial No. DRKS00005241).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...