Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 32(26): e1908291, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32363647

RESUMO

Hunger and chronic undernourishment impact over 800 million people, which translates to ≈10.7% of the world's population. While countries are increasingly making efforts to reduce poverty and hunger by pursuing sustainable energy and agricultural practices, a third of the food produced around the globe still is wasted and never consumed. Reducing food shortages is vital in this effort and is often addressed by the development of genetically modified produce or chemical additives and inedible coatings, which create additional health and environmental concerns. Herein, a multifunctional bio-nanocomposite comprised largely of egg-derived polymers and cellulose nanomaterials as a conformal coating onto fresh produce that slows down food decay by retarding ripening, dehydration, and microbial invasion is reported. The coating is edible, washable, and made from readily available inexpensive or waste materials, which makes it a promising economic alternative to commercially available fruit coatings and a solution to combat food wastage that is rampant in the world.


Assuntos
Filmes Comestíveis , Armazenamento de Alimentos/métodos , Frutas/química , Nanocompostos/química , Celulose/química , Curcumina/química , Clara de Ovo/química , Gema de Ovo/química , Tensão Superficial , Viscosidade
2.
Biomaterials ; 244: 119927, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32199283

RESUMO

Both hard material photolithography and soft lithography are widely used for patterned cell culture. Soft lithography techniques enable bioactive molecule incorporation, however complex surface modifications are required to introduce specific ligands or proteins in conventional photolithography. In this study, we demonstrate human umbilical vein cell (HUVEC) and adult bone marrow derived mesenchymal stem cell (MSC) patterning on titanium diboride (TiB2) layers deposited on silicon (Si) substrates by electron-beam evaporation and micropatterned using photolithography. Micropatterned cell growth specificity on geometric shapes of circle and/or lines is achieved via differential growth factors adsorption in the presence of heparin. Specifically, the deposited films of TiB2 showed increased stiffness, hardness, hydrophilicity and surface charge when compared to background Si. These substrates were found to be compatible with HUVEC and MSC viability, based on biomarker expression and RNA-sequence transcriptome analysis. Cell-type dependent, micropattern selective cell growth, such as contact guidance, alignment, and durotaxis, were observed. In addition, MSC clustering was achieved, enabling a three-dimensional (3D) aggregate based microenvironment during culture. This study clearly demonstrates the potential of microfabricated Si and TiB2 biomaterials for patterned cell culture in vitro, independent of any additional surface modification.


Assuntos
Células-Tronco Mesenquimais , Silício , Compostos de Boro , Adesão Celular , Humanos , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...