Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 117(50): 13664-72, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24117136

RESUMO

The electronic absorption spectra of the two methyl derivatives of the naphthalene cation were measured using an argon tagging technique. In both cases, a band system was observed in the visible range and assigned to the D2 ← D0 electronic transition. The 1-methylnaphthalene(+) absorption bands revealed a red shift of 808 cm(-1), relative to those of the naphthalene cation (14,906 cm(-1)), whereas for 2-methylnaphthalene(+) a blue shift of 226 cm(-1) appeared. A short vibrational progression, similar to the naphthalene cation, was also observed for both isomers and found to involve similar aromatic ring skeleton vibrations. Moreover, insights into the internal rotation motion of the methyl group were inferred, although the spectral resolution was not sufficient to fully resolve the substructure. These measurements were supported by detailed quantum chemical calculations. They allowed exploration of the potential energy curves along this internal coordinate, along with a complete simulation of the harmonic Franck-Condon factors using the cumulant Gaussian fluctuations formalism extended to include the internal rotation.


Assuntos
Lasers , Modelos Moleculares , Naftalenos/química , Análise Espectral , Conformação Molecular
2.
Phys Chem Chem Phys ; 15(25): 10241-50, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23552801

RESUMO

The IR emission spectroscopy of naphthalene and its singly- and doubly-dehydrogenated radicals has been modeled using kinetic Monte Carlo simulations, taking into account the various relaxation pathways of radiative emission and hydrogen loss. Our modeling relies on quantum chemistry ingredients that were obtained from dedicated calculations based on density functional theory, including explicitly anharmonicity contributions. Our results show that the fragmentation products significantly contribute to the overall IR emission spectrum, especially to the intensity ratios between bands. Owing to the likely presence of polycyclic aromatic hydrocarbons in the interstellar medium, these findings are particularly relevant in the astrophysical context.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...