Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am Nat ; 197(5): 607-614, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33908826

RESUMO

AbstractTheory predicts that allometric constraints on sound production should be stronger for the lower frequencies of vocalizations than for the higher frequencies, which could originate from an allometry for sound frequency bandwidth. Using song recordings of approximately 1,000 passerine species (from >75% passerine genera), we show a significantly steeper allometry for the lower song frequencies than for the higher song frequencies, resulting in a positive allometry of frequency bandwidth: larger species can use wider bandwidths than smaller species. The bandwidth allometry exists in songbirds (oscines) but not in nonoscine passerines, indicating that it emerges from a combination of constraints to sound frequency production or transmission and the evolved behavior of oscines: unlike the narrow bandwidths of most nonoscine songs, the learned songs of oscines often use wide bandwidths that can be limited by both lower and upper constraints to sound frequency. This bandwidth allometry has implications for several research topics in acoustic communication.


Assuntos
Aves Canoras , Vocalização Animal , Animais , Aprendizagem , Aves Canoras/fisiologia , Som , Vocalização Animal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...