Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 25(9): e202400006, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38457364

RESUMO

High cell density cultivation is an established method for the production of various industrially important products such as recombinant proteins. However, these protocols are not always suitable for biocatalytic processes as the focus often lies on biomass production rather than high specific activities of the enzyme inside the cells. In contrast, a range of shake flask protocols are well known with high specific activities but rather low cell densities. To overcome this gap, we established a tailor-made fed-batch protocol combining both aspects: high cell density and high specific activities of heterologously produced enzyme. Using the example of an industrially relevant amine transaminase from Bacillus megaterium, we describe a strategy to optimize the cultivation yield based on the feed rate, IPTG concentration, and post-induction temperature. By adjusting these key parameters, we were able to increase the specific activity by 2.6-fold and the wet cell weight by even 17-fold compared to shake flasks. Finally, we were able to verify our established protocol by transferring it to another experimenter. With that, our optimization strategy can serve as a template for the production of high titers of heterologously produced, active enzymes and might enable the availability of these catalysts for upscaling biocatalytic processes.


Assuntos
Bacillus megaterium , Escherichia coli , Transaminases , Bacillus megaterium/enzimologia , Bacillus megaterium/metabolismo , Transaminases/metabolismo , Transaminases/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Aminas/metabolismo , Aminas/química , Biocatálise
2.
J Biotechnol ; 141(3-4): 166-73, 2009 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-19433222

RESUMO

Hydroxynitrile lyases (HNLs) are applied in technical processes for the synthesis of chiral cyanohydrins. Here we describe the thorough characterization of the recently discovered R-hydroxynitrile lyase from Arabidopsis thaliana and its S-selective counterpart from Manihot esculenta (MeHNL) concerning their properties relevant for technical applications. The results are compared to available data of the structurally related S-HNL from Hevea brasiliensis (HbHNL), which is frequently applied in technical processes. Whereas substrate ranges are highly similar for all three enzymes, the stability of MeHNL with respect to higher temperature and low pH-values is superior to the other HNLs with alpha/beta-hydrolase fold. This enhanced stability is supposed to be due to the ability of MeHNL to form tetramers in solution, while HbHNL and AtHNL are dimers. The different inactivation pathways, deduced by means of circular dichroism, tryptophan fluorescence and static light scattering further support these results. Our data suggest different possibilities to stabilize MeHNL and AtHNL for technical applications: whereas the application of crude cell extracts is appropriate for MeHNL, AtHNL is stabilized by addition of polyols. In addition, the molecular reason for the inhibition of MeHNL and HbHNL by acetate could be elucidated, whereas no such inhibition was observed with AtHNL.


Assuntos
Aldeído Liases/química , Aldeído Liases/metabolismo , Arabidopsis/enzimologia , Hevea/enzimologia , Hidrolases/genética , Manihot/enzimologia , Acetonitrilas/metabolismo , Aldeído Liases/genética , Sequência de Aminoácidos , Arabidopsis/genética , Estabilidade Enzimática , Escherichia coli/genética , Hevea/genética , Concentração de Íons de Hidrogênio , Manihot/genética , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Especificidade por Substrato , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...