Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38597307

RESUMO

A new multiple-time scale integration method is presented that propagates ab initio path integral molecular dynamics (PIMD). This method uses a large time step to generate an approximate geometrical configuration whose energy and gradient are evaluated at the level of an ab initio method, and then, a more precise integration scheme, e.g., the Bulirsch-Stoer method or velocity Verlet integration with a smaller time step, is used to integrate from the previous step using the computationally efficient interpolated potential energy surface constructed from two consecutive points. This method makes the integration of PIMD more efficient and accurate compared with the velocity Verlet integration. A Nosé-Hoover chain thermostat combined with this new multiple-time scale method has good energy conservation even with a large time step, which is usually challenging in velocity Verlet integration for PIMD due to the very small chain mass when a large number of beads are used. The new method is used to calculate infrared spectra and free energy profiles to demonstrate its accuracy and capabilities.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124097, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38457873

RESUMO

Vibrational circular dichroism (VCD) spectra have been computed with qualitatively correct sign patterns for α-helical peptides using various methods, ranging from empirical models to ab initio quantum mechanical computations. However, some details, such as deuteration effects and isotope substitution shifts and sign patterns for the resultant amide I' band shape, have remained a predictive challenge. Fully optimized computations for a 25-residue Ala-rich peptide, including implicit solvent corrections and explicit side chains that experimentally stabilize these model helical peptides in water, have been carried out using density functional theory (DFT). These fully minimized structures show minor changes in the (ϕ,ψ) torsions at the termini and yield an extra negative band to the low energy side of the characteristic amide I' couplet VCD, in agreement with experiments. Additionally, these calculations give the right sign and relative intensity patterns, as compared to experimental results, for several 13C=O substituted variants. The differences from previously reported computations that used ideal helical structures and vacuum conditions imply that inclusion of distorted termini and solvent effects can have an impact on the final detailed spectral patterns. Inclusion of side chains in these calculations had very little effect on the computed amide I' IR and VCD. Tests of constrained geometries, varying dielectric, and different functionals indicate that each can affect the band shapes, particularly for the 12C=O components, but these aspects do not fully explain the difference from previous spectral simulations. Inclusion of long-range amide coupling, as obtained from DFT computation of the full structure, or transfer of parameters from a somewhat longer peptide model, rather than shorter model, seems to be more important for the final detailed band shape under isotopic substitution. However, these corrections can also induce other changes, suggesting that previously reported, limited calculations may have been qualitatively useful due to a balance of errors. This may also explain the success of simple empirical IR models.


Assuntos
Amidas , Peptídeos , Dicroísmo Circular , Estrutura Secundária de Proteína , Espectrofotometria Infravermelho , Peptídeos/química , Amidas/química , Solventes/química
3.
J Phys Chem A ; 128(12): 2498-2506, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38489510

RESUMO

The modeling of spin-orbit coupling (SOC) remains a challenge in computational chemistry due to the high computational cost. With the rising popularity of spin-driven processes and f-block metals in chemistry and materials science, it is incumbent on the community to develop accurate multiconfigurational SOC methods that scale to large systems and understand the limits of different treatments of SOC. Herein, we introduce an implementation of perturbative SOC in scalar-relativistic two-component CASSCF (srX2C-CASSCF-SO). Perspectives on the limitations and accuracy of srX2C-CASSCF-SO are presented via benchmark calculations.

4.
Phys Chem Chem Phys ; 26(10): 8094-8105, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38384253

RESUMO

In Chemistry, complexity is not necessarily associated to large systems, as illustrated by the textbook example of axial-equatorial equilibrium in mono-substituted cyclohexanes. The difficulty in modelling such a simple isomerization is related to the need for reproducing the delicate balance between two forces, with opposite effects, namely the attractive London dispersion and the repulsive steric interactions. Such balance is a stimulating challenge for density-functional approximations and it is systematically explored here by considering 20 mono-substituted cyclohexanes. In comparison to highly accurate CCSD(T) reference calculations, their axial-equatorial equilibrium is studied with a large set of 48 exchange-correlation approximations, spanning from semilocal to hybrid to more recent double hybrid functionals. This dataset, called SAV20 (as Steric A-values for 20 molecules), allows to highlight the difficulties encountered by common and more original DFT approaches, including those corrected for dispersion with empirical potentials, the 6-31G*-ACP model, and our cost-effective PBE-QIDH/DH-SVPD protocol, in modeling these challenging interactions. Interestingly, the performance of the approaches considered in this contribution on the SAV20 dataset does not correlate with that obtained with other more standard datasets, such as S66, IDISP or NC15, thus indicating that SAV20 covers physicochemical features not already considered in previous noncovalent interaction benchmarks.

5.
J Am Chem Soc ; 146(10): 6721-6732, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38413362

RESUMO

Many organic reactions are characterized by a complex mechanism with a variety of transition states and intermediates of different chemical natures. Their correct and accurate theoretical characterization critically depends on the accuracy of the computational method used. In this work, we study a complex ambimodal cycloaddition with five transition states, two intermediates, and three products, and we ask whether density functional theory (DFT) can provide a correct description of this type of complex and multifaceted reaction. Our work fills a gap in that most systematic benchmarks of DFT for chemical reactions have considered much simpler reactions. Our results show that many density functionals not only lead to seriously large errors but also differ from one another in predicting whether the reaction is ambimodal. Only a few of the available functionals provide a balanced description of the complex and multifaceted reactions. The parameters varied in the tested functionals are the ingredients, the treatment of medium-range and nonlocal correlation energy, and the inclusion of Hartree-Fock exchange. These results show a clear need for more benchmarks on the mechanisms of large molecules in complex reactions.

6.
J Chem Theory Comput ; 19(24): 9102-9117, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38096578

RESUMO

The accuracy of Kohn-Sham density functional theory depends strongly on the approximation to the exchange-correlation functional. In this work, we present a new exchange-correlation functional called M11pz (M11 plus rung-3.5 terms with zero Hartree-Fock exchange) that is built on the M11plus functional with the goal of using its rung-3.5 terms without a Hartree-Fock exchange term, especially to improve the accuracy for strongly correlated systems. The M11pz functional is optimized with the same local and rung-3.5 ingredients that are used in M11plus but without any percentage of Hartree-Fock exchange. The performance of M11pz is compared with eight local functionals, and M11pz is found to be in top three when the errors or ranks are averaged over eight grouped and partially overlapping databases: AME418/22, atomic and molecular energies; MGBE172, main-group bond energies; TMBE40, transition-metal bond energies; SR309, single-reference systems; MR54, multireference systems; BH192, barrier heights; NC579, noncovalent interaction energies; and MS20, molecular structures. For calculations of band gaps of solids, M11pz is the second best of the nine tested functionals that have zero Hartree-Fock exchange.

7.
J Phys Chem A ; 127(46): 9695-9704, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37939355

RESUMO

The predictive ability of density functional theory is fundamental to its usefulness in chemical applications. Recent work has compared solution-phase enthalpies of activation for metal-ligand bond dissociation to enthalpies of reaction for bond dissociation, and the present work continues those comparisons for 43 density functional methods. The results for ligand dissociation enthalpies of 30 metal-ligand complexes tested in this work reveal significant inadequacies of some functionals as well as challenges from the dispersion corrections to some functionals. The analysis presented here demonstrates the excellent performance of a recent density functional, M11plus, which contains nonlocal rung-3.5 correlation. We also find a good agreement between theory and experiment for some functionals without empirical dispersion corrections such as M06, r2SCAN, M06-L, and revM11, as well as good performance for some functionals with added dispersion corrections such as ωB97X-D (which always has a correction) and BLYP, B3LYP, CAM-B3LYP, and PBE0 when the optional dispersion corrections are added.

8.
J Phys Chem Lett ; 14(29): 6522-6531, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37449565

RESUMO

Theoretical characterization of reactions of complex molecules depends on providing consistent accuracy for the relative energies of intermediates and transition states. Here we employ the DLPNO-CCSD(T) method with core-valence correlation, large basis sets, and extrapolation to the CBS limit to provide benchmark values for Diels-Alder transition states leading to competitive strained pentacyclic adducts. We then used those benchmarks to test a diverse set of wave function and density functional methods for the absolute and relative barrier heights of these transition states. Our results show that only a few of the tested density functionals can predict the absolute barrier heights satisfactorily, although relative barrier heights are more accurate. The most accurate functionals tested are ωB97M-V, M11plus, ωB97X-V, PBE-D3(0), M11, and MN15 with MUDs from best estimates less than 3.0 kcal. These findings can guide selection of density functionals for future studies of crowded, strained transition states of large molecules.

9.
Bioengineering (Basel) ; 10(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37106684

RESUMO

The use of poles in sports, to support propulsion, is an integral and inherent component of some sports disciplines such as skiing (cross-country and roller), Nordic walking, and trail running. The aim of this review is to summarize the current state-of-the-art of literature on multiple influencing factors of poles in terms of biomechanical and physiological effects. We evaluated publications in the subfields of biomechanics, physiology, coordination, and pole properties. Plantar pressure and ground reaction forces decreased with the use of poles in all included studies. The upper body and trunk muscles were more active. The lower body muscles were either less active or no different from walking without poles. The use of poles led to a higher oxygen consumption (VO2) without increasing the level of perceived exertion (RPE). Furthermore, the heart rate (HR) tended to be higher. Longer poles reduced the VO2 and provided a longer thrust phase and greater propulsive impulse. The mass of the poles showed no major influence on VO2, RPE, or HR. Solely the activity of the biceps brachii increased with the pole mass.

10.
JACS Au ; 3(2): 358-367, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36873704

RESUMO

Spin-orbit coupling (SOC) is an important driving force in photochemistry. In this work, we develop a perturbative spin-orbit coupling method within the linear response time-dependent density function theory framework (TDDFT-SO). A full state interaction scheme, including singlet-triplet and triplet-triplet coupling, is introduced to describe not only the coupling between the ground and excited states, but also between excited states with all couplings between spin microstates. In addition, expressions to compute spectral oscillator strengths are presented. Scalar relativity is included variationally using the second-order Douglas-Kroll-Hess Hamiltonian, and the TDDFT-SO method is validated against variational SOC relativistic methods for atomic, diatomic, and transition metal complexes to determine the range of applicability and potential limitations. To demonstrate the robustness of TDDFT-SO for large-scale chemical systems, the UV-Vis spectrum of Au25(SR)18 - is computed and compared to experiment. Perspectives on the limitation, accuracy, and capability of perturbative TDDFT-SO are presented via analyses of benchmark calculations. Additionally, an open-source Python software package (PyTDDFT-SO) is developed and released to interface with the Gaussian 16 quantum chemistry software package to perform this calculation.

11.
J Phys Chem A ; 126(39): 7033-7039, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36154137

RESUMO

Accurate modeling of important nuclear quantum effects, such as nuclear delocalization, zero-point energy, and tunneling, as well as non-Born-Oppenheimer effects, requires treatment of both nuclei and electrons quantum mechanically. The nuclear-electronic orbital (NEO) method provides an elegant framework to treat specified nuclei, typically protons, on the same level as the electrons. In conventional electronic structure theory, finding a converged ground state can be a computationally demanding task; converging NEO wavefunctions, due to their coupled electronic and nuclear nature, is even more demanding. Herein, we present an efficient simultaneous optimization method that uses the direct inversion in the iterative subspace method to simultaneously converge wavefunctions for both the electrons and quantum nuclei. Benchmark studies show that the simultaneous optimization method can significantly reduce the computational cost compared to the conventional stepwise method for optimizing NEO wavefunctions for multicomponent systems.

12.
J Phys Chem A ; 126(34): 5814-5820, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35998668

RESUMO

Bond lengths have been calculated for a test set of 120 diatomic species, including all homonuclear diatomics, hydrides, fluorides, and oxides for elements H through Kr for which experimental data is available for comparison. The performance of the PFD-3B functional is significantly better than competitive DFT methods. The rms error in bond lengths is reduced to 0.01 Å using a moderate size 3Za1Pa + f triple-ζ basis set, with the rms error in harmonic vibrational constants, ωe, equal to 38 cm-1. A very small 2ZP0H basis set is sufficient to calculate anharmonic constants, ωeXe, within ±4 cm-1. The rotational constants, Be, agree with experiment to within ±2%, and the vibration-rotation coupling constants, αe, agree within 10%. The calculated vibrational zero-point energy, ZPE, agrees with experiment to within ±0.06 kcal mol-1 for the diatomic test set, and the error increases to just ±0.11 kcal mol-1 for a set of 12 small polyatomic species. Comparison of a detailed anharmonic analysis of the twisted ethylene cation to the PFI-ZEKE experimental data illustrates the reliability of the PFD-3B for atypical structures.

13.
J Chem Theory Comput ; 18(8): 4774-4794, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35849729

RESUMO

We report an analytical bond energy from bond orders and populations (BEBOP) model that provides intramolecular bond energy decompositions for chemical insight into the thermochemistry of molecules. The implementation reported here employs a minimum basis set Mulliken population analysis on well-conditioned Hartree-Fock orbitals to decompose total electronic energies into physically interpretable contributions. The model's parametrization scheme is based on atom-specific parameters for hybridization and atom pair-specific parameters for short-range repulsion and extended Hückel-type bond energy term fitted to reproduce CBS-QB3 thermochemistry data. The current implementation is suitable for molecules involving H, Li, Be, B, C, N, O, and F atoms, and it can be used to analyze intramolecular bond energies of molecular structures at optimized stationary points found from other computational methods. This first-generation model brings the computational cost of a Hartree-Fock calculation using a large triple-ζ basis set, and its atomization energies are comparable to those from widely used hybrid Kohn-Sham density functional theory (DFT, as benchmarked to 109 species from the G2/97 test set and an additional 83 reference species). This model should be useful for the community by interpreting overall ab initio molecular energies in terms of physically insightful bond energy contributions, e.g., bond dissociation energies, resonance energies, molecular strain energies, and qualitative energetic contributions to the activation barrier in chemical reaction mechanisms. This work reports a critical benchmarking of this method as well as discussions of its strengths and weaknesses compared to hybrid DFT (i.e., B3LYP, M062X, PBE0, and APF methods), and other cost-effective approximate Hamiltonian semiempirical quantum methods (i.e., AM1, PM6, PM7, and DFTB3).


Assuntos
Termodinâmica , Teoria da Densidade Funcional , Estrutura Molecular
14.
J Chem Theory Comput ; 18(5): 2947-2954, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35384665

RESUMO

Molecules containing late-row elements exhibit large relativistic effects. To account for both relativistic effects and electron correlation in a computationally inexpensive way, we derived a formulation of multiconfiguration pair-density functional theory with the relativistic exact-two-component Hamiltonian (X2C-MC-PDFT). In this new method, relativistic effects are included during variational optimization of a reference wave function by exact-two-component complete active-space self-consistent-field (X2C-CASSCF) theory, followed by an energy evaluation using pair-density functional theory. Benchmark studies of excited-state and ground-state fine-structure splitting of atomic species show that X2C-MC-PDFT can significantly improve the X2C-CASSCF results by introducing additional state-specific electron correlation.

15.
J Chem Theory Comput ; 18(1): 141-150, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-34908414

RESUMO

X-ray absorption spectroscopy is a powerful probe of local electronic and nuclear structures, providing insights into chemical processes. The theoretical prediction and interpretation of metal L-edge X-ray absorption spectra are complicated by both relativistic effects, including spin-orbit coupling and the multiconfigurational nature of the states involved. This work details an exact two-component multireference restricted active space (RAS) configuration interaction scheme that uses an exact two-component state-averaged complete active space self-consistent-field method, which includes the spin-orbit coupling in a variational manner, for the accurate description of the electronic structure before using a RAS configuration interaction method to describe the core excited states of the X-ray spectrum. Benchmark calculations are presented for a series of iron-containing complexes, with results showing key features of the spectrum being reproduced, including ligand-to-metal charge transfer and shake-up excitations.

16.
J Chem Phys ; 155(7): 074106, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34418935

RESUMO

A new integration scheme for ab initio molecular dynamics (MD) is proposed in this work for efficient propagation using large time steps (e.g., 2.0 fs or a larger time step with one ab initio evaluation of gradients for the dynamics point and one additional evaluation for the anchor point per dynamics step). This algorithm is called re-integration with anchor points (REAP) integrator. The REAP integrator starts from a quadratic potential energy surface based on the updated Hessian to propagate the system to the halfway of the MD step that is called the anchor point. Then, an approximate dynamics position for this step is obtained by the propagation based on an interpolated surface using the anchor point and the previous MD point. The approximate dynamics step can be further improved by the re-integration steps, i.e., integration based on the interpolated surface using the calculated energies, gradients, and updated Hessians of the previous step, the anchor point, and the approximate current step. A trajectory only needs one analytical Hessian calculation at the initial geometry, and thereafter, only calculations of gradients are required. This integrator can be considered either as a generalization of Hessian-based predictor-corrector integration with substantial improvement of accuracy and efficiency or as a dynamics on interpolated surfaces that are built on the fly. An automatic correction scheme is implemented by comparing the interpolated energies and gradients to the actual ones to ensure the quality of the interpolations at a certain level. The tests in this work show that the REAP method can increase computational efficiency by more than one order of magnitude than that of the velocity Verlet integrator and more than twice that of Hessian-based predictor-corrector integration.

17.
J Comput Chem ; 42(14): 970-981, 2021 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-33748983

RESUMO

We investigate the performance of a set of recently introduced range-separated double-hybrid functionals, namely ωB2-PLYP, ωB2GP-PLYP, RSX-0DH, and RSX-QIDH models for hard-to-calculate excitation energies. We compare with the parent (B2-PLYP, B2GP-PLYP, PBE0-DH, and PBE-QIDH) and other (DSD-PBEP86) double-hybrid models as well as with some of the most widely employed hybrid functionals (B3LYP, PBE0, M06-2X, and ωB97X). For this purpose, we select a number of medium-sized intra- and inter-molecular charge-transfer excitations, which are known to be challenging to calculate using time-dependent density-functional theory (TD-DFT) and for which accurate reference values are available. We assess whether the high accuracy shown by the newest double-hybrid models is also confirmed for those cases too. We find that asymptotically corrected double-hybrid models yield a superior performance, especially for the inter-molecular charge-transfer excitation energies, as compared to standard double-hybrid models. Overall, the PBE-QIDH and its corresponding range-separated RSX-QIDH functional are recommended for general-purpose TD-DFT applications, depending on whether long-range effects are expected to play a significant role.

19.
J Phys Chem A ; 124(49): 10296-10311, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33232148

RESUMO

The performance of the isotropic spherical atom model can be significantly enhanced through combination with anisotropic three-body dispersion interactions to give the new PFD-3B density functional, which reduces the mean absolute deviation (MAD) relative to CCSD(T)/CBS benchmark energies from 0.78 to 0.19 kcal/mol for the S22 test set. Comparison with the extended S22 × 5 test set in the figure indicates that this accuracy is maintained through large variations in geometry. The performance of the PFD-3B functional over the S22 × 5 test set is superior to any of the functionals previously applied to this set. Over the S22 set of examples, the MADs from the CCSD(T)/CBS values for Re, De, and ωe, are 0.032 Å, 0.21 kcal/mol, and 6 cm-1, respectively. Over a comparable set of 26 examples containing second and third row atoms, the MADs from the CCSD(T)/CBS values for Re, De, and ωe, are 0.033 Å, 0.19 kcal/mol, and 5 cm-1, respectively. If used to optimize the geometry of the 48 examples, on average the PFD-3B functional introduces an error of only 0.042 kcal/mol in CCSD(T) single-point energies. This small error combines with the reported analytical first and second derivatives to makes the PFD-3B functional an attractive model for geometry optimization and zero-point energy calculations.

20.
J Chem Phys ; 153(16): 164101, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33138421

RESUMO

Density functional theory is widely used for modeling the magnetic properties of molecules, solids, and surfaces. Rung-3.5 ingredients, based on the expectation values of nonlocal one-electron operators, are new promising tools for the construction of exchange-correlation functional approximations. We present the formal extension of rung-3.5 ingredients to the calculation of magnetic properties. We add to the underlying nonlocal operators a dependence on the gauge of the magnetic field, and we derive the working equations for rung-3.5 expectation values in basis sets of gauge-including atomic orbitals. We demonstrate that the gauge corrections are significant. We conclude with an initial study of chemical shifts, optical rotatory dispersion, and Raman optical activity spectra predicted by M11plus, a range-separated hybrid meta functional incorporating nonlocal rung-3.5 correlation. M11plus proves to be reasonably accurate, further motivating the incorporation of nonlocal rung-3.5 ingredients in new density functional approximations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...