Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Annu Rev Microbiol ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39094056

RESUMO

Apicomplexan parasites are a group of eukaryotic protozoans with diverse biology that have affected human health like no other group of parasites. These obligate intracellular parasites rely on their cytoskeletal structures for giving them form, enabling them to replicate in unique ways and to migrate across tissue barriers. Recent progress in transgenesis and imaging tools allowed detailed insights into the components making up and regulating the actin and microtubule cytoskeleton as well as the alveolate-specific intermediate filament-like cytoskeletal network. These studies revealed interesting details that deviate from the cell biology of canonical model organisms. Here we review the latest developments in the field and point to a number of open questions covering the most experimentally tractable parasites: Plasmodium, the causative agent of malaria; Toxoplasma gondii, the causative agent of toxoplasmosis; and Cryptosporidium, a major cause of diarrhea.

2.
EMBO Mol Med ; 16(9): 2060-2079, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39103697

RESUMO

Malaria vaccination approaches using live Plasmodium parasites are currently explored, with either attenuated mosquito-derived sporozoites or attenuated blood-stage parasites. Both approaches would profit from the availability of attenuated and avirulent parasites with a reduced blood-stage multiplication rate. Here we screened gene-deletion mutants of the rodent parasite P. berghei and the human parasite P. falciparum for slow growth. Furthermore, we tested the P. berghei mutants for avirulence and resolving blood-stage infections, while preserving sporozoite formation and liver infection. Targeting 51 genes yielded 18 P. berghei gene-deletion mutants with several mutants causing mild infections. Infections with the two most attenuated mutants either by blood stages or by sporozoites were cleared by the immune response. Immunization of mice led to protection from disease after challenge with wild-type sporozoites. Two of six generated P. falciparum gene-deletion mutants showed a slow growth rate. Slow-growing, avirulent P. falciparum mutants will constitute valuable tools to inform on the induction of immune responses and will aid in developing new as well as safeguarding existing attenuated parasite vaccines.


Assuntos
Vacinas Antimaláricas , Malária , Plasmodium berghei , Plasmodium falciparum , Esporozoítos , Vacinas Atenuadas , Animais , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Esporozoítos/imunologia , Plasmodium berghei/imunologia , Plasmodium berghei/genética , Plasmodium falciparum/imunologia , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Malária/prevenção & controle , Malária/parasitologia , Malária/imunologia , Camundongos , Vacinação/métodos , Humanos , Deleção de Genes , Feminino
3.
Nat Nanotechnol ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187581

RESUMO

Infectious diseases and cancer evade immune surveillance using similar mechanisms. Targeting immune mechanisms using common strategies thus represents a promising avenue to improve prevention and treatment. Synthetic immunology can provide such strategies by applying engineering principles from synthetic biology to immunology. Synthetic biologists engineer cells by top-down genetic manipulation or bottom-up assembly from nanoscale building blocks. Recent successes in treating advanced tumours and diseases using genetically engineered immune cells highlight the power of the top-down synthetic immunology approach. However, genetic immune engineering is mostly limited to ex vivo applications and is subject to complex counter-regulation inherent to immune functions. Bottom-up synthetic biology can harness the rich nanotechnology toolbox to engineer molecular and cellular systems from scratch and equip them with desired functions. These are beginning to be tailored to perform targeted immune functions and should hence allow intervention strategies by rational design. In this Perspective we conceptualize bottom-up synthetic immunology as a new frontier field that uses nanotechnology for crucial innovations in therapy and the prevention of infectious diseases and cancer.

4.
Trends Parasitol ; 40(8): 657-659, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39025766

RESUMO

In 2004 the first annual BioMalPar meeting was held at EMBL Heidelberg, bringing together researchers from around the world with the goal of building connections between malaria research groups in Europe. Twenty years on it is time to reflect on what was achieved and to look ahead to the future.


Assuntos
Malária , Humanos , Pesquisa Biomédica/tendências , Europa (Continente) , Pesquisa/tendências , Cooperação Internacional , Animais
6.
Mol Microbiol ; 121(3): 565-577, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38396332

RESUMO

Plasmodium sporozoites are the highly motile and invasive forms of the malaria parasite transmitted by mosquitoes. Sporozoites form within oocysts at the midgut wall of the mosquito, egress from oocysts and enter salivary glands prior to transmission. The GPI-anchored major surface protein, the circumsporozoite protein (CSP) is important for Plasmodium sporozoite formation, egress, migration and invasion. To visualize CSP, we previously generated full-length versions of CSP internally tagged with the green fluorescent protein, GFP. However, while these allowed for imaging of sporogony in oocysts, sporozoites failed to egress. Here, we explore different strategies to overcome this block in egress and obtain salivary gland resident sporozoites that express CSP-GFP. Replacing the N-terminal and repeat region with GFP did not allow sporozoite formation. Lowering expression of CSP-GFP at the endogenous locus allowed sporozoite formation but did not overcome egress block. Crossing of CSP-GFP expressing parasites that are blocked in egress with wild-type parasites yielded a small fraction of parasites that entered salivary glands and expressed various levels of CSP-GFP. Expressing CSP-GFP constructs from a silent chromosome region from promoters that are active only post salivary gland invasion yielded normal numbers of fluorescent salivary gland sporozoites, albeit with low levels of fluorescence. We also show that lowering CSP expression by 50% allowed egress from oocysts but not salivary gland entry. In conclusion, Plasmodium berghei parasites with normal CSP expression tolerate a certain level of CSP-GFP without disruption of oocyst egress and salivary gland invasion.


Assuntos
Anopheles , Esporozoítos , Animais , Esporozoítos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Anopheles/parasitologia , Oocistos , Plasmodium berghei/genética , Plasmodium berghei/metabolismo
7.
Mol Microbiol ; 121(3): 481-496, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38009402

RESUMO

Plasmodium sporozoite development in and egress from oocysts in the Anopheles mosquito remains largely enigmatic. In a previously performed high-throughput knockout screen, the putative subunit 5 of the prefoldin complex (PbPCS5, PBANKA_0920100) was identified as essential for parasite development during mosquito and liver stage development. Here we generated and analyzed a PbPCS5 knockout parasite line during its development in the mosquito. Interestingly, PbPCS5 deletion does not significantly affect oocyst formation but leads to a growth defect resulting in aberrantly shaped sporozoites. Sporozoites produced in the absence of PbPCS5 were thinner, markedly elongated, and did, in most cases, not contain a nucleus. Sporozoites contained fewer subpellicular microtubules, which reached deep into the sporoblast during sporogony where they contacted and indented nuclei. These aberrantly shaped sporozoites did not reach the salivary glands, and we, therefore, conclude that PbPCS5 is essential for sporogony and the life cycle progression of the parasite during its mosquito stage.


Assuntos
Anopheles , Chaperonas Moleculares , Parasitos , Animais , Plasmodium berghei/genética , Oocistos , Esporozoítos , Anopheles/parasitologia , Proteínas de Protozoários/genética , Microtúbulos
8.
Curr Opin Cell Biol ; 86: 102277, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38048658

RESUMO

Cytoskeletal dynamics are essential for cellular homeostasis and development for both metazoans and protozoans. The function of cytoskeletal elements in protozoans can diverge from that of metazoan cells, with microtubules being more stable and actin filaments being more dynamic. This is particularly striking in protozoan parasites that evolved to enter metazoan cells. Here, we review recent progress towards understanding cytoskeletal dynamics in protozoan parasites, with a focus on divergent properties compared to classic model organisms.


Assuntos
Parasitos , Animais , Citoesqueleto , Citoesqueleto de Actina , Microtúbulos , Actinas
9.
EMBO Mol Med ; 15(11): e18727, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37789804

RESUMO

Round table discussion on challenges and opportunities in malaria research with Elena Levashina, Dominique Soldati-Favre, Andrew Waters, Friedrich Frischknecht, and Julian Rayner.


Assuntos
Malária , Humanos
10.
Trends Parasitol ; 39(12): 991-995, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37865610

RESUMO

Plasmodium ookinetes and sporozoites were discovered 125 years ago by MacCallum (J. Exp. Med. 1898;3:117-136) and Ross (Ind. Med. Gaz. 1899;34:1-3), respectively. While the migration capacity of ookinetes was noted immediately, the movements of sporozoites remained enigmatic for decades. Today, we know many proteins involved in parasite migration and start to conceptualize a mechanistic understanding of motility.


Assuntos
Plasmodium , Corrida , Animais , Esporozoítos/metabolismo , Plasmodium/metabolismo , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA