Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 23(8): 4807-4822, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34309154

RESUMO

The physical and biological dynamics that influence phytoplankton communities in the oligotrophic ocean are complex, changing across broad temporal and spatial scales. Eukaryotic phytoplankton (e.g., diatoms), despite their relatively low abundance in oligotrophic waters, are responsible for a large component of the organic matter flux to the ocean interior. Mesoscale eddies can impact both microbial community structure and function, enhancing primary production and carbon export, but the mechanisms that underpin these dynamics are still poorly understood. Here, mesoscale eddy influences on the taxonomic diversity and expressed functional profiles of surface communities of microeukaryotes and particle-associated heterotrophic bacteria from the North Pacific Subtropical Gyre were assessed over 2 years (spring 2016 and summer 2017). The taxonomic diversity of the microeukaryotes significantly differed by eddy polarity (cyclonic versus anticyclonic) and between sampling seasons/years and was significantly correlated with the taxonomic diversity of particle-associated heterotrophic bacteria. The expressed functional profile of these taxonomically distinct microeukaryotes varied consistently as a function of eddy polarity, with cyclones having a different expression pattern than anticyclones, and between sampling seasons/years. These data suggest that mesoscale forcing, and associated changes in biogeochemistry, could drive specific physiological responses in the resident microeukaryote community, independent of species composition.


Assuntos
Diatomáceas , Microbiota , Diatomáceas/genética , Microbiota/genética , Oceano Pacífico , Fitoplâncton/genética , Estações do Ano , Água do Mar
2.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33419955

RESUMO

Horizontal gene transfer (HGT) is an important source of novelty in eukaryotic genomes. This is particularly true for the ochrophytes, a diverse and important group of algae. Previous studies have shown that ochrophytes possess a mosaic of genes derived from bacteria and eukaryotic algae, acquired through chloroplast endosymbiosis and from HGTs, although understanding of the time points and mechanisms underpinning these transfers has been restricted by the depth of taxonomic sampling possible. We harness an expanded set of ochrophyte sequence libraries, alongside automated and manual phylogenetic annotation, in silico modeling, and experimental techniques, to assess the frequency and functions of HGT across this lineage. Through manual annotation of thousands of single-gene trees, we identify continuous bacterial HGT as the predominant source of recently arrived genes in the model diatom Phaeodactylum tricornutum Using a large-scale automated dataset, a multigene ochrophyte reference tree, and mathematical reconciliation of gene trees, we note a probable elevation of bacterial HGTs at foundational points in diatom evolution, following their divergence from other ochrophytes. Finally, we demonstrate that throughout ochrophyte evolutionary history, bacterial HGTs have been enriched in genes encoding secreted proteins. Our study provides insights into the sources and frequency of HGTs, and functional contributions that HGT has made to algal evolution.


Assuntos
Cianobactérias/genética , Diatomáceas/genética , Transferência Genética Horizontal/genética , Filogenia , Cloroplastos/genética , Impressões Digitais de DNA/métodos , Genoma/genética , Simbiose/genética
3.
Environ Microbiol ; 22(1): 381-396, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31709692

RESUMO

Emiliania huxleyi is a calcifying haptophyte, contributing to both the organic and inorganic marine carbon cycles. In marine ecosystems, light is a major driver of phytoplankton physiology and ultimately carbon flow through the ecosystem. Here, we analysed a Lagrangian time-series of metatranscriptomes collected in the North Pacific Subtropical Gyre (NPSG) to examine how in situ populations of E. huxleyi modulate gene expression over day-night transitions. Many E. huxleyi contigs had a diel expression pattern, with 61% of contigs clustering into modules with statistically significant diel periodicity. Contigs involved in processes that build up energy stores, like carbon fixation and lipid synthesis, peaked around dawn. In contrast, contigs involved in processes that released energy stores, like respiration and lipid degradation, peaked mid-day and towards dusk. These patterns suggest an orchestrated cycle of building, then consuming energy stores in E. huxleyi populations in the NPSG. Selected contigs related to the cell cycle also exhibited significant diel periodicity consistent with phased modulations of division observed in culture. Overall, these patterns of gene expression suggest a daily metabolic cascade that could contribute to both organic and inorganic carbon flow in this nutrient depleted ecosystem.


Assuntos
Ritmo Circadiano/fisiologia , Metabolismo Energético/fisiologia , Regulação da Expressão Gênica/fisiologia , Haptófitas/metabolismo , Cálcio/metabolismo , Carbono/metabolismo , Ciclo do Carbono/fisiologia , Ecossistema , Regulação da Expressão Gênica/genética , Haptófitas/classificação , Haptófitas/genética , Metabolismo dos Lipídeos/fisiologia , Oceano Pacífico , Fitoplâncton/classificação , Fitoplâncton/metabolismo
4.
Front Microbiol ; 10: 330, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30891009

RESUMO

The N2 fixing cyanobacterium Trichodesmium is a critically important organism in oligotrophic marine ecosystems, supplying "new" nitrogen (N) to the otherwise N-poor tropical and subtropical regions where it occurs. Low concentrations of phosphorus (P) in these regions can constrain Trichodesmium distribution and N2 fixation rates. Physiological characterization of a single species in a mixed community can be challenging, and 'omic approaches are increasingly important tools for tracking nutritional physiology in a taxon-specific manner. As such, studies examining the dynamics of gene and protein markers of physiology (e.g., nutrient stress) are critical for the application and interpretation of such 'omic data in situ. Here we leveraged combined transcriptomics, proteomics, and enzyme activity assays to track the physiological response of Trichodesmium erythraeum IMS101 to P deficiency and subsequent P re-supply over 72 h of sampling. P deficiency resulted in differential gene expression, protein abundance, and enzyme activity that highlighted a synchronous shift in P physiology with increases in the transcripts and corresponding proteins for hydrolyzing organic phosphorus, taking up phosphate with higher affinity, and modulating intracellular P demand. After P deficiency was alleviated, gene expression of these biomarkers was reduced to replete levels within 4 h of P amendment. A number of these gene biomarkers were adjacent to putative pho boxes and their expression patterns were similar to a sphR response regulator. Protein products of the P deficiency biomarkers were slow to decline, with 84% of the original P deficient protein set still significantly differentially expressed after 72 h. Alkaline phosphatase activity tracked with proteins for this enzyme. With the rapid turnover time of transcripts, they appear to be good biomarkers of a P stress phenotype, whereas proteins, with a slower turnover time, may better reflect cellular activities. These results highlight the importance of validating and pairing transcriptome and proteome data that can be applied to physiological studies of key species in situ.

5.
Front Microbiol ; 10: 136, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809203

RESUMO

Harmful algal blooms (HABs) threaten ecosystems and human health worldwide. Controlling nitrogen inputs to coastal waters is a common HAB management strategy, as nutrient concentrations often suggest coastal blooms are nitrogen-limited. However, defining best nutrient management practices is a long-standing challenge: in part, because of difficulties in directly tracking the nutritional physiology of harmful species in mixed communities. Using metatranscriptome sequencing and incubation experiments, we addressed this challenge by assaying the in situ physiological ecology of the ecosystem destructive alga, Aureococcus anophagefferens. Here we show that gene markers of phosphorus deficiency were expressed in situ, and modulated by the enrichment of phosphorus, which was consistent with the observed growth rate responses. These data demonstrate the importance of phosphorus in controlling brown-tide dynamics, suggesting that phosphorus, in addition to nitrogen, should be evaluated in the management and mitigation of these blooms. Given that nutrient concentrations alone were suggestive of a nitrogen-limited ecosystem, this study underscores the value of directly assaying harmful algae in situ for the development of management strategies.

6.
ISME J ; 13(1): 118-131, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30116042

RESUMO

In the surface ocean, light fuels photosynthetic carbon fixation of phytoplankton, playing a critical role in ecosystem processes including carbon export to the deep sea. In oligotrophic oceans, diatom-diazotroph associations (DDAs) play a keystone role in ecosystem function because diazotrophs can provide otherwise scarce biologically available nitrogen to the diatom host, fueling growth and subsequent carbon sequestration. Despite their importance, relatively little is known about the nature of these associations in situ. Here we used metatranscriptomic sequencing of surface samples from the North Pacific Subtropical Gyre (NPSG) to reconstruct patterns of gene expression for the diazotrophic symbiont Richelia and we examined how these patterns were integrated with those of the diatom host over day-night transitions. Richelia exhibited significant diel signals for genes related to photosynthesis, N2 fixation, and resource acquisition, among other processes. N2 fixation genes were significantly co-expressed with host nitrogen uptake and metabolism, as well as potential genes involved in carbon transport, which may underpin the exchange of nitrogen and carbon within this association. Patterns of expression suggested cell division was integrated between the host and symbiont across the diel cycle. Collectively these data suggest that symbiont-host physiological ecology is strongly interconnected in the NPSG.


Assuntos
Cianobactérias/fisiologia , Diatomáceas/microbiologia , Fixação de Nitrogênio/fisiologia , Carbono/metabolismo , Sequestro de Carbono , Cianobactérias/genética , Ecossistema , Regulação da Expressão Gênica , Nitrogênio/metabolismo , Oceanos e Mares , Fitoplâncton/metabolismo , Água do Mar , Simbiose
7.
ISME J ; 12(6): 1486-1495, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29491494

RESUMO

The N2-fixing cyanobacterium Trichodesmium is intensely studied because of the control this organism exerts over the cycling of carbon and nitrogen in the low nutrient ocean gyres. Although iron (Fe) and phosphorus (P) bioavailability are thought to be major drivers of Trichodesmium distributions and activities, identifying resource controls on Trichodesmium is challenging, as Fe and P are often organically complexed and their bioavailability to a single species in a mixed community is difficult to constrain. Further, Fe and P geochemistries are linked through the activities of metalloenzymes, such as the alkaline phosphatases (APs) PhoX and PhoA, which are used by microbes to access dissolved organic P (DOP). Here we identified significant correlations between Trichodesmium-specific transcriptional patterns in the North Atlantic (NASG) and North Pacific Subtropical Gyres (NPSG) and patterns in Fe and P biogeochemistry, with the relative enrichment of Fe stress markers in the NPSG, and P stress markers in the NASG. We also observed the differential enrichment of Fe-requiring PhoX transcripts in the NASG and Fe-insensitive PhoA transcripts in the NPSG, suggesting that metalloenzyme switching may be used to mitigate Fe limitation of DOP metabolism in Trichodesmium. This trait may underpin Trichodesmium success across disparate ecosystems.


Assuntos
Cianobactérias/metabolismo , Fixação de Nitrogênio , Nitrogênio/metabolismo , Trichodesmium/metabolismo , Oceano Atlântico , Carbono/metabolismo , Ecossistema , Perfilação da Expressão Gênica , Geografia , Ferro/metabolismo , Oceano Pacífico , Fosfatos/metabolismo , Fósforo/metabolismo , Transcrição Gênica
8.
ISME J ; 12(4): 997-1007, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29382945

RESUMO

Trichodesmium is a widespread, N2 fixing marine cyanobacterium that drives inputs of newly fixed nitrogen and carbon into the oligotrophic ecosystems where it occurs. Colonies of Trichodesmium ubiquitously occur with heterotrophic bacteria that make up a diverse microbiome, and interactions within this Trichodesmium holobiont could influence the fate of fixed carbon and nitrogen. Metatranscriptome sequencing was performed on Trichodesmium colonies collected during high-frequency Lagrangian sampling in the North Pacific Subtropical Gyre (NPSG) to identify possible interactions between the Trichodesmium host and microbiome over day-night cycles. Here we show significantly coordinated patterns of gene expression between host and microbiome, many of which had significant day-night periodicity. The functions of the co-expressed genes suggested a suite of interactions within the holobiont linked to key resources including nitrogen, carbon, and iron. Evidence of microbiome reliance on Trichodesmium-derived vitamin B12 was also detected in co-expression patterns, highlighting a dependency that could shape holobiont community structure. Collectively, these patterns of expression suggest that biotic interactions could influence colony cycling of resources like nitrogen and vitamin B12, and decouple activities, like N2 fixation, from typical abiotic drivers of Trichodesmium physiological ecology.


Assuntos
Regulação Bacteriana da Expressão Gênica , Interações Microbianas , Microbiota/genética , Trichodesmium/genética , Carbono/metabolismo , Processos Heterotróficos , Nitrogênio/metabolismo , Oceanos e Mares , Periodicidade , Água do Mar/microbiologia , Transcriptoma , Trichodesmium/metabolismo
9.
ISME J ; 11(9): 2090-2101, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28534879

RESUMO

Trichodesmium is a genus of marine diazotrophic colonial cyanobacteria that exerts a profound influence on global biogeochemistry, by injecting 'new' nitrogen into the low nutrient systems where it occurs. Colonies of Trichodesmium ubiquitously contain a diverse assemblage of epibiotic microorganisms, constituting a microbiome on the Trichodesmium host. Metagenome sequences from Trichodesmium colonies were analyzed along a resource gradient in the western North Atlantic to examine microbiome community structure, functional diversity and metabolic contributions to the holobiont. Here we demonstrate the presence of a core Trichodesmium microbiome that is modulated to suit different ocean regions, and contributes over 10 times the metabolic potential of Trichodesmium to the holobiont. Given the ubiquitous nature of epibionts on colonies, the substantial functional diversity within the microbiome is likely an integral facet of Trichodesmium physiological ecology across the oligotrophic oceans where this biogeochemically significant diazotroph thrives.


Assuntos
Água do Mar/microbiologia , Trichodesmium/isolamento & purificação , Nitrogênio/metabolismo , Fixação de Nitrogênio , Oceanos e Mares , Filogenia , Trichodesmium/classificação , Trichodesmium/genética , Trichodesmium/metabolismo
10.
Front Microbiol ; 7: 238, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973616

RESUMO

The ecosystem roles of fungi have been extensively studied by targeting one organism and/or biological process at a time, but the full metabolic potential of fungi has rarely been captured in an environmental context. We hypothesized that fungal genome sequences could be assembled directly from the environment using metagenomics and that transcriptomics and proteomics could simultaneously reveal metabolic differentiation across habitats. We reconstructed the near-complete 27 Mbp genome of a filamentous fungus, Acidomyces richmondensis, and evaluated transcript and protein expression in floating and streamer biofilms from an acid mine drainage (AMD) system. A. richmondensis transcripts involved in denitrification and in the degradation of complex carbon sources (including cellulose) were up-regulated in floating biofilms, whereas central carbon metabolism and stress-related transcripts were significantly up-regulated in streamer biofilms. These findings suggest that the biofilm niches are distinguished by distinct carbon and nitrogen resource utilization, oxygen availability, and environmental challenges. An isolated A. richmondensis strain from this environment was used to validate the metagenomics-derived genome and confirm nitrous oxide production at pH 1. Overall, our analyses defined mechanisms of fungal adaptation and identified a functional shift related to different roles in carbon and nitrogen turnover for the same species of fungi growing in closely located but distinct biofilm niches.

11.
ISME J ; 9(8): 1846-56, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25647349

RESUMO

Little is known about the biogeography or stability of sediment-associated microbial community membership because these environments are biologically complex and generally difficult to sample. High-throughput-sequencing methods provide new opportunities to simultaneously genomically sample and track microbial community members across a large number of sampling sites or times, with higher taxonomic resolution than is associated with 16 S ribosomal RNA gene surveys, and without the disadvantages of primer bias and gene copy number uncertainty. We characterized a sediment community at 5 m depth in an aquifer adjacent to the Colorado River and tracked its most abundant 133 organisms across 36 different sediment and groundwater samples. We sampled sites separated by centimeters, meters and tens of meters, collected on seven occasions over 6 years. Analysis of 1.4 terabase pairs of DNA sequence showed that these 133 organisms were more consistently detected in saturated sediments than in samples from the vadose zone, from distant locations or from groundwater filtrates. Abundance profiles across aquifer locations and from different sampling times identified organism cohorts that comprised subsets of the 133 organisms that were consistently associated. The data suggest that cohorts are partly selected for by shared environmental adaptation.


Assuntos
Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Água Subterrânea/microbiologia , Bactérias/classificação , Bactérias/genética , Colorado , Sequenciamento de Nucleotídeos em Larga Escala , Metagenoma , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
12.
Nat Commun ; 6: 6372, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25721682

RESUMO

Bacteria from phyla lacking cultivated representatives are widespread in natural systems and some have very small genomes. Here we test the hypothesis that these cells are small and thus might be enriched by filtration for coupled genomic and ultrastructural characterization. Metagenomic analysis of groundwater that passed through a ~0.2-µm filter reveals a wide diversity of bacteria from the WWE3, OP11 and OD1 candidate phyla. Cryogenic transmission electron microscopy demonstrates that, despite morphological variation, cells consistently have small cell size (0.009±0.002 µm(3)). Ultrastructural features potentially related to cell and genome size minimization include tightly packed spirals inferred to be DNA, few densely packed ribosomes and a variety of pili-like structures that might enable inter-organism interactions that compensate for biosynthetic capacities inferred to be missing from genomic data. The results suggest that extremely small cell size is associated with these relatively common, yet little known organisms.


Assuntos
Bactérias/genética , Bactérias/ultraestrutura , Água Subterrânea/microbiologia , Microbiota/genética , Microbiologia da Água , Sequência de Bases , Microscopia Crioeletrônica , Filtração , Tamanho do Genoma/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
13.
Curr Biol ; 25(6): 690-701, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25702576

RESUMO

BACKGROUND: Archaea represent a significant fraction of Earth's biodiversity, yet they remain much less well understood than Bacteria. Gene surveys, a few metagenomic studies, and some single-cell sequencing projects have revealed numerous little-studied archaeal phyla. Certain lineages appear to branch deeply and may be part of a major phylum radiation. The structure of this radiation and the physiology of the organisms remain almost unknown. RESULTS: We used genome-resolved metagenomic analyses to investigate the diversity, genomes sizes, metabolic capacities, and potential roles of Archaea in terrestrial subsurface biogeochemical cycles. We sequenced DNA from complex sediment and planktonic consortia from an aquifer adjacent to the Colorado River (USA) and reconstructed the first complete genomes for Archaea using cultivation-independent methods. To provide taxonomic context, we analyzed an additional 151 newly sampled archaeal sequences. We resolved two new phyla within a major, apparently deep-branching group of phyla (a superphylum). The organisms have small genomes, and metabolic predictions indicate that their primary contributions to Earth's biogeochemical cycles involve carbon and hydrogen metabolism, probably associated with symbiotic and/or fermentation-based lifestyles. CONCLUSIONS: The results dramatically expand genomic sampling of the domain Archaea and clarify taxonomic designations within a major superphylum. This study, in combination with recently published work on bacterial phyla lacking cultivated representatives, reveals a fascinating phenomenon of major radiations of organisms with small genomes, novel proteome composition, and strong interdependence in both domains.


Assuntos
Archaea/genética , Archaea/metabolismo , Ciclo do Carbono/genética , Genoma Arqueal , Anaerobiose/genética , Archaea/classificação , Biodiversidade , Metagenômica , Modelos Biológicos , Modelos Genéticos , Filogenia
14.
Front Microbiol ; 5: 375, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25104951

RESUMO

Transcriptome profiling was performed on the harmful algal bloom-forming pelagophyte Aureococcus anophagefferens strain CCMP 1850 to assess responses to common stressors for dense phytoplankton blooms: low inorganic nitrogen concentrations, low inorganic phosphorus concentrations, low light levels, and a replete control. The de novo assemblies of pooled reads from all treatments reconstructed ~54,000 transcripts using Trinity, and ~31,000 transcripts using ABySS. Comparison to the strain CCMP 1984 genome showed that the majority of the gene models were present in both de novo assemblies and that roughly 95% of contigs from both assemblies mapped to the genome, with Trinity capturing slightly more genome content. Sequence reads were mapped back to the de novo assemblies as well as the gene models and differential expression was analyzed using a Bayesian approach called Analysis of Sequence Counts (ASC). On average, 93% of significantly upregulated transcripts recovered by genome mapping were present in the significantly upregulated pool from both de novo assembly methods. Transcripts related to the transport and metabolism of nitrogen were upregulated in the low nitrogen treatment, transcripts encoding enzymes that hydrolyze organic phosphorus or relieve arsenic toxicity were upregulated in the low phosphorus treatment, and transcripts for enzymes that catabolize organic compounds, restructure lipid membranes, or are involved in sulfolipid biosynthesis were upregulated in the low light treatment. A comparison of this transcriptome to the nutrient regulated transcriptional response of CCMP 1984 identified conserved responses between these two strains. These analyses reveal the transcriptional underpinnings of physiological shifts that could contribute to the ecological success of this species in situ: organic matter processing, metal detoxification, lipid restructuring, and photosynthetic apparatus turnover.

15.
PLoS One ; 8(2): e56018, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23405248

RESUMO

In microbial ecology, a fundamental question relates to how community diversity and composition change in response to perturbation. Most studies have had limited ability to deeply sample community structure (e.g. Sanger-sequenced 16S rRNA libraries), or have had limited taxonomic resolution (e.g. studies based on 16S rRNA hypervariable region sequencing). Here, we combine the higher taxonomic resolution of near-full-length 16S rRNA gene amplicons with the economics and sensitivity of short-read sequencing to assay the abundance and identity of organisms that represent as little as 0.01% of sediment bacterial communities. We used a new version of EMIRGE optimized for large data size to reconstruct near-full-length 16S rRNA genes from amplicons sheared and sequenced with Illumina technology. The approach allowed us to differentiate the community composition among samples acquired before perturbation, after acetate amendment shifted the predominant metabolism to iron reduction, and once sulfate reduction began. Results were highly reproducible across technical replicates, and identified specific taxa that responded to the perturbation. All samples contain very high alpha diversity and abundant organisms from phyla without cultivated representatives. Surprisingly, at the time points measured, there was no strong loss of evenness, despite the selective pressure of acetate amendment and change in the terminal electron accepting process. However, community membership was altered significantly. The method allows for sensitive, accurate profiling of the "long tail" of low abundance organisms that exist in many microbial communities, and can resolve population dynamics in response to environmental change.


Assuntos
Bactérias/classificação , Biodiversidade , DNA Bacteriano/genética , Variação Genética , Sedimentos Geológicos/microbiologia , Água Subterrânea/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Filogenia , Análise de Sequência de DNA
16.
Environ Microbiol ; 15(5): 1416-27, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23441888

RESUMO

Vibrio parahaemolyticus is a naturally occurring bacterium common in coastal waters where it concentrates in shellfish through filter feeding. The bacterium is a human pathogen and the leading cause of seafood-borne gastroenteritis. Presently there is little information regarding mechanisms of environmental persistence of V.parahaemolyticus or an accurate early warning system for outbreak prediction. Vibrios have been shown to adhere to several substrates in the environment, including chitin, one of the most abundant polymers in the ocean. Diatoms are abundant in estuarine waters and some species produce chitin as a component of the silica cell wall or as extracellular fibrils. We examined the role of specific surface structures on the bacterium, the type IV pilins PilA and MshA, in adherence to diatom-derived chitin. Biofilm formation and adherence of V.parahaemolyticus to chitin is mediated by the ability of the bacterium to express functional type IV pili. The amount of adherence to diatom-derived chitin is controlled by increased chitin production that occurs in later stages of diatom growth. The data presented here suggest late-stage diatom blooms may harbour high concentrations of V.parahaemolyticus and could serve as the foundation for a more accurate early warning system for outbreaks of this human pathogen.


Assuntos
Quitina/metabolismo , Diatomáceas , Proteínas de Fímbrias/metabolismo , Vibrio parahaemolyticus/metabolismo , Microbiologia da Água , Aderência Bacteriana , Biofilmes , Diatomáceas/química , Diatomáceas/microbiologia , Surtos de Doenças/prevenção & controle , Humanos , Vibrioses/prevenção & controle
17.
ISME J ; 7(4): 800-16, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23190730

RESUMO

Stimulation of subsurface microorganisms to induce reductive immobilization of metals is a promising approach for bioremediation, yet the overall microbial community response is typically poorly understood. Here we used proteogenomics to test the hypothesis that excess input of acetate activates complex community functioning and syntrophic interactions among autotrophs and heterotrophs. A flow-through sediment column was incubated in a groundwater well of an acetate-amended aquifer and recovered during microbial sulfate reduction. De novo reconstruction of community sequences yielded near-complete genomes of Desulfobacter (Deltaproteobacteria), Sulfurovum- and Sulfurimonas-like Epsilonproteobacteria and Bacteroidetes. Partial genomes were obtained for Clostridiales (Firmicutes) and Desulfuromonadales-like Deltaproteobacteria. The majority of proteins identified by mass spectrometry corresponded to Desulfobacter-like species, and demonstrate the role of this organism in sulfate reduction (Dsr and APS), nitrogen fixation and acetate oxidation to CO2 during amendment. Results indicate less abundant Desulfuromonadales, and possibly Bacteroidetes, also actively contributed to CO2 production via the tricarboxylic acid (TCA) cycle. Proteomic data indicate that sulfide was partially re-oxidized by Epsilonproteobacteria through nitrate-dependent sulfide oxidation (using Nap, Nir, Nos, SQR and Sox), with CO2 fixed using the reverse TCA cycle. We infer that high acetate concentrations, aimed at stimulating anaerobic heterotrophy, led to the co-enrichment of, and carbon fixation in Epsilonproteobacteria. Results give an insight into ecosystem behavior following addition of simple organic carbon to the subsurface, and demonstrate a range of biological processes and community interactions were stimulated.


Assuntos
Deltaproteobacteria/metabolismo , Epsilonproteobacteria/metabolismo , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Água Subterrânea/microbiologia , Proteômica , Bacteroidetes/classificação , Bacteroidetes/isolamento & purificação , Bacteroidetes/metabolismo , Biodegradação Ambiental , Carbono , Deltaproteobacteria/classificação , Deltaproteobacteria/isolamento & purificação , Ecossistema , Epsilonproteobacteria/classificação , Epsilonproteobacteria/isolamento & purificação , Ciclo do Nitrogênio , Oxirredução , Enxofre
18.
Microbiome ; 1(1): 22, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24450983

RESUMO

BACKGROUND: Sediments are massive reservoirs of carbon compounds and host a large fraction of microbial life. Microorganisms within terrestrial aquifer sediments control buried organic carbon turnover, degrade organic contaminants, and impact drinking water quality. Recent 16S rRNA gene profiling indicates that members of the bacterial phylum Chloroflexi are common in sediment. Only the role of the class Dehalococcoidia, which degrade halogenated solvents, is well understood. Genomic sampling is available for only six of the approximate 30 Chloroflexi classes, so little is known about the phylogenetic distribution of reductive dehalogenation or about the broader metabolic characteristics of Chloroflexi in sediment. RESULTS: We used metagenomics to directly evaluate the metabolic potential and diversity of Chloroflexi in aquifer sediments. We sampled genomic sequence from 86 Chloroflexi representing 15 distinct lineages, including members of eight classes previously characterized only by 16S rRNA sequences. Unlike in the Dehalococcoidia, genes for organohalide respiration are rare within the Chloroflexi genomes sampled here. Near-complete genomes were reconstructed for three Chloroflexi. One, a member of an unsequenced lineage in the Anaerolinea, is an aerobe with the potential for respiring diverse carbon compounds. The others represent two genomically unsampled classes sibling to the Dehalococcoidia, and are anaerobes likely involved in sugar and plant-derived-compound degradation to acetate. Both fix CO2 via the Wood-Ljungdahl pathway, a pathway not previously documented in Chloroflexi. The genomes each encode unique traits apparently acquired from Archaea, including mechanisms of motility and ATP synthesis. CONCLUSIONS: Chloroflexi in the aquifer sediments are abundant and highly diverse. Genomic analyses provide new evolutionary boundaries for obligate organohalide respiration. We expand the potential roles of Chloroflexi in sediment carbon cycling beyond organohalide respiration to include respiration of sugars, fermentation, CO2 fixation, and acetogenesis with ATP formation by substrate-level phosphorylation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...