Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Haptics ; 16(2): 311-321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37163404

RESUMO

We present a novel soft exoskeleton providing active support for hand closing and opening. The main novelty is a different tendon routing, folded laterally on both sides of the hand, and adding clenching forces when the exoskeleton is activated. It improves the stability of the glove, diminishing slippage and detachment of tendons from the hand palm toward the grasping workspace. The clenching effect is released when the hand is relaxed, thus enhancing the user's comfort. The alternative routing allowed embedding a single actuator on the hand dorsum, resulting more compact with no remote cable transmission. Enhanced adaptation to the hand is introduced by the modular design of the soft polymer open rings. FEM simulations were performed to understand the interaction between soft modules and fingers. Different experiments assessed the desired effect of the proposed routing in terms of stability and deformation of the glove, evaluated the inter-finger compliance for non-cylindrical grasping, and characterized the output grasping force. Experiments with subjects explored the grasping performance of the soft exoskeleton with different hand sizes. A preliminary evaluation with Spinal Cord Injury patients was useful to highlight the strengths and limitations of the device when applied to the target scenario.


Assuntos
Exoesqueleto Energizado , Robótica , Percepção do Tato , Humanos , Mãos , Dedos , Força da Mão , Tendões
2.
IEEE Trans Haptics ; 16(4): 594-601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37155384

RESUMO

In this paper, we present a mechanical hand-tracking system with tactile feedback designed for fine manipulation in teleoperation scenarios. Alternative tracking methods based on artificial vision and data gloves have become an asset for virtual reality interaction. Yet, occlusions, lack of precision, and the absence of effective haptic feedback beyond vibrotactile still appear as a limit for teleoperation applications. In this work, we propose a methodology to design a linkage mechanism for hand pose tracking purposes, preserving complete finger mobility. Presentation of the method is followed by design and implementation of a working prototype, and by evaluation of the tracking accuracy using optical markers. Moreover, a teleoperation experiment involving a dexterous robotic arm and hand was proposed to ten participants. It investigated the effectiveness and repeatability of the hand tracking with combined haptic feedback during a proposed pick and place manipulation tasks.


Assuntos
Percepção do Tato , Humanos , Retroalimentação , Tato , Mãos , Dedos , Interface Usuário-Computador
3.
J Neuroeng Rehabil ; 19(1): 14, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35120546

RESUMO

BACKGROUND: Although robotics assisted rehabilitation has proven to be effective in stroke rehabilitation, a limited functional improvements in Activities of Daily Life has been also observed after the administration of robotic training. To this aim in this study we compare the efficacy in terms of both clinical and functional outcomes of a robotic training performed with a multi-joint functional exoskeleton in goal-oriented exercises compared to a conventional physical therapy program, equally matched in terms of intensity and time. As a secondary goal of the study, it was assessed the capability of kinesiologic measurements-extracted by the exoskeleton robotic system-of predicting the rehabilitation outcomes using a set of robotic biomarkers collected at the baseline. METHODS: A parallel-group randomized clinical trial was conducted within a group of 26 chronic post-stroke patients. Patients were randomly assigned to two groups receiving robotic or manual therapy. The primary outcome was the change in score on the upper extremity section of the Fugl-Meyer Assessment (FMA) scale. As secondary outcome a specifically designed bimanual functional scale, Bimanual Activity Test (BAT), was used for upper limb functional evaluation. Two robotic performance indices were extracted with the purpose of monitoring the recovery process and investigating the interrelationship between pre-treatment robotic biomarkers and post-treatment clinical improvement in the robotic group. RESULTS: A significant clinical and functional improvements in both groups (p < 0.01) was reported. More in detail a significantly higher improvement of the robotic group was observed in the proximal portion of the FMA (p < 0.05) and in the reduction of time needed for accomplishing the tasks of the BAT (p < 0.01). The multilinear-regression analysis pointed out a significant correlation between robotic biomarkers at the baseline and change in FMA score (R2 = 0.91, p < 0.05), suggesting their potential ability of predicting clinical outcomes. CONCLUSION: Exoskeleton-based robotic upper limb treatment might lead to better functional outcomes, if compared to manual physical therapy. The extracted robotic performance could represent predictive indices of the recovery of the upper limb. These results are promising for their potential exploitation in implementing personalized robotic therapy. Clinical Trial Registration clinicaltrials.gov, NCT03319992 Unique Protocol ID: RH-UL-LEXOS-10. Registered 20.10.2017, https://clinicaltrials.gov/ct2/show/NCT03319992.


Assuntos
Exoesqueleto Energizado , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Modalidades de Fisioterapia , Recuperação de Função Fisiológica , Reabilitação do Acidente Vascular Cerebral/métodos , Resultado do Tratamento , Extremidade Superior
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6420-6423, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892581

RESUMO

The spatiotemporal kinematic synergy, a coupling of multiple degrees of freedom (DoF), runs through human activities of daily living (ADL). And it is an entry point for exploring the central nervous system's (CNS) control process of musculoskeletal system by analyzing the time-varying kinematic synergy. The aim of this study was to find more physiological properties from the angular velocity profiles of synergy. Ten healthy right-handed subjects were asked to reach target button at different locations. During reaching movement, the motion data of five right upper limb joints were recorded, and the synergistic patterns were extracted by PCA algorithm. Our results showed that the combinations of the first four synergies were sufficient to explain raw data. As far as possible to exclude the effects of individual and information differences, we found shoulder flexion/extension and elbow flexion/extension made distinct contribution in a period of time to the control procedure performed by CNS after targets were confirmed. Our preliminary results implied that reaching movements required comparatively constant scheduling of shoulder horizontal abduction/adduction, shoulder internal/external rotation and wrist ulnar/radial deviation by CNS, while scheduling of SFE and EFE depends on the objectives.Clinical relevance- The findings of this paper may provide a novel dynamic control evidence based on CNS for realizing near-natural control of assistive devices in motor rehabilitation area.


Assuntos
Atividades Cotidianas , Extremidade Superior , Humanos , Projetos Piloto , Amplitude de Movimento Articular , Articulação do Punho
5.
Front Comput Neurosci ; 15: 668579, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690729

RESUMO

In myo-control, for computational and setup constraints, the measurement of a high number of muscles is not always possible: the choice of the muscle set to use in a myo-control strategy depends on the desired application scope and a search for a reduced muscle set, tailored to the application, has never been performed. The identification of such set would involve finding the minimum set of muscles whose difference in terms of intention detection performance is not statistically significant when compared to the original set. Also, given the intrinsic sensitivity of muscle synergies to variations of EMG signals matrix, the reduced set should not alter synergies that come from the initial input, since they provide physiological information on motor coordination. The advantages of such reduced set, in a rehabilitation context, would be the reduction of the inputs processing time, the reduction of the setup bulk and a higher sensitivity to synergy changes after training, which can eventually lead to modifications of the ongoing therapy. In this work, the existence of a minimum muscle set, called optimal set, for an upper-limb myoelectric application, that preserves performance of motor activity prediction and the physiological meaning of synergies, has been investigated. Analyzing isometric contractions during planar reaching tasks, two types of optimal muscle sets were examined: a subject-specific one and a global one. The former relies on the subject-specific movement strategy, the latter is composed by the most recurrent muscles among subjects specific optimal sets and shared by all the subjects. Results confirmed that the muscle set can be reduced to achieve comparable hand force estimation performances. Moreover, two types of muscle synergies namely "Pose-Shared" (extracted from a single multi-arm-poses dataset) and "Pose-Related" (clustering pose-specific synergies), extracted from the global optimal muscle set, have shown a significant similarity with full-set related ones meaning a high consistency of the motor primitives. Pearson correlation coefficients assessed the similarity of each synergy. The discovering of dominant muscles by means of the optimization of both muscle set size and force estimation error may reveal a clue on the link between synergistic patterns and the force task.

6.
Wearable Technol ; 2: e4, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38486631

RESUMO

This paper presents a soft, tendon-driven, robotic glove designed to augment grasp capability and provide rehabilitation assistance for postspinal cord injury patients. The basis of the design is an underactuation approach utilizing postural synergies of the hand to support a large variety of grasps with a single actuator. The glove is lightweight, easy to don, and generates sufficient hand closing force to assist with activities of daily living. Device efficiency was examined through a characterization of the power transmission elements, and output force production was observed to be linear in both cylindrical and pinch grasp configurations. We further show that, as a result of the synergy-inspired actuation strategy, the glove only slightly alters the distribution of forces across the fingers, compared to a natural, unassisted grasping pattern. Finally, a preliminary case study was conducted using a participant suffering from an incomplete spinal cord injury (C7). It was found that through the use of the glove, the participant was able to achieve a 50% performance improvement (from four to six blocks) in a standard Box and Block test.

7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3731-3734, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018812

RESUMO

The current knowledge about muscle synergies does not clearly explain how both rehabilitation and brain plasticity act on the way they evolve after a cortical stroke. In this preliminary study, the authors analyzed the correlation between healthy and affected muscle synergies and the way the latter change after rehabilitation, following the clinical scales scores changes. The aim was finding whether the patients were supposed to get the unimpaired synergies back or develop new synergies due to neural changes. Eleven chronic stroke survivors performed 20 rehabilitation sessions with robotic hand, obtaining different scores in the assessment sessions. Results revealed no significant correlations between changes on clinical assessment scales and the difference in similarities with healthy synergies, between post and pre-assessment ones, suggesting that the stroke recovering process involves the growth of new synergies, different from the ones of healthy subjects. Those new synergies could better facilitate motor hand and elbow functions.


Assuntos
Robótica , Acidente Vascular Cerebral , Mãos , Humanos , Projetos Piloto , Sobreviventes
8.
J Neuroeng Rehabil ; 17(1): 144, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115487

RESUMO

BACKGROUND: The past decade has seen the emergence of rehabilitation treatments using virtual reality. One of the advantages in using this technology is the potential to create positive motivation, by means of engaging environments and tasks shaped in the form of serious games. The aim of this study is to determine the efficacy of immersive Virtual Environments and weaRable hAptic devices (VERA) for rehabilitation of upper limb in children with Cerebral Palsy (CP) and Developmental Dyspraxia (DD). METHODS: A two period cross-over design was adopted for determining the differences between the proposed therapy and a conventional treatment. Eight children were randomized into two groups: one group received the VERA treatment in the first period and the manual therapy in the second period, and viceversa for the other group. Children were assessed at the beginning and the end of each period through both the Nine Hole Peg Test (9-HPT, primary outcome) and Kinesiological Measurements obtained during the performing of similar tasks in a real setting scenario (secondary outcomes). RESULTS: All subjects, not depending from which group they come from, significantly improved in both the performance of the 9-HPT and in the parameters of the kinesiological measurements (movement error and smoothness). No statistically significant differences have been found between the two groups. CONCLUSIONS: These findings suggest that immersive VE and wearable haptic devices is a viable alternative to conventional therapy for improving upper extremity function in children with neuromotor impairments. Trial registration ClinicalTrials, NCT03353623. Registered 27 November 2017-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03353623.


Assuntos
Paralisia Cerebral/reabilitação , Apraxia da Marcha/reabilitação , Realidade Virtual , Dispositivos Eletrônicos Vestíveis , Paralisia Cerebral/fisiopatologia , Criança , Estudos Cross-Over , Feminino , Apraxia da Marcha/fisiopatologia , Humanos , Masculino , Projetos Piloto , Método Simples-Cego , Extremidade Superior/fisiopatologia
9.
J Neuroeng Rehabil ; 17(1): 120, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859222

RESUMO

BACKGROUND: Human sensorimotor control of dexterous manipulation relies on afferent sensory signals. Explicit tactile feedback is generally not available to prosthetic hand users, who have to rely on incidental information sources to partly close the control loop, resulting in suboptimal performance and manipulation difficulty. Recent studies on non-invasive supplementary sensory feedback indicated that time-discrete vibrational feedback delivered upon relevant mechanical events outperforms continuous tactile feedback. However, we hypothesize that continuous tactile feedback can be more effective in non-routine manipulation tasks (i.e., tasks where the grip force is modified reactively in response to the sensory feedback due to the unpredictable behavior of the manipulated object, such as picking and holding a virtual fragile object) if delivered to highly sensitive areas. We further hypothesize that this continuous tactile feedback is not necessary during all the duration of the manipulation task, since adaptation occurs. METHODS: We investigated the effectiveness of continuous tactile feedback in precision manipulation, together with a new sensory feedback policy, where the continuous tactile feedback is gradually removed when the grasp reaches a steady state (namely, transient tactile feedback). We carried out an experiment in a virtual-reality setting with custom tactile feedback devices, which can apply continuous pressure and vibrations, attached to the thumb and index finger. We enrolled 24 healthy participants and instructed them to pick and hold a fragile virtual cube without breaking it. We compared their manipulation performance when using four different sensory feedback methods, i.e., no tactile feedback, discrete vibrations, continuous tactile feedback, and transient tactile feedback. The latter consisted of gradually removing the continuous feedback in the static phase of the grasp. RESULTS: Continuous tactile feedback leads to a significantly larger number of successful trials than discrete vibrational cues and no feedback conditions, yet the gradual removal of the continuous feedback yields to comparable outcomes. Moreover, the participants preferred the continuous stimuli over the vibrational cues and the removal in the static phase did not significantly impact their appreciation of the continuous tactile feedback. CONCLUSIONS: These results advocate for the use of continuous supplementary tactile feedback for fine manipulation control and indicate that it can seamlessly be removed in the static phase of the grasp, possibly due to the mechanism of sensory adaptation. This encourages the development of energy-efficient supplementary feedback devices for prosthetic and telemanipulation applications, where encumbrance and power consumption are burdensome constraints.


Assuntos
Retroalimentação Sensorial/fisiologia , Desempenho Psicomotor/fisiologia , Tato/fisiologia , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Percepção do Tato/fisiologia , Realidade Virtual
10.
IEEE Trans Haptics ; 13(1): 226-232, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32012025

RESUMO

The design and control of a new series-viscous-elastic joint are presented. The proposed joint consists of 3D printed parts compressing nonlinear elastic silicone springs. The use of silicone springs is the main novelty of the system; they exhibit internal damping, which enhances system performance allowing a simpler and more stable control. Their stiffness allows the system to bear a torque of about 4.5 Nm at a deformation angle of about 20 degrees. In this article, the system is modeled using the Neo-Hookean material model and then characterized through experiments to build the joint torque estimator. A proportional torque controller is implemented to evaluate bandwidth, transparency, impedance rendering, and stability, obtaining satisfactory results. The bandwidth ranges from 6.9 to 9.9 Hz depending on chirp input torque amplitude, as the system is nonlinear. The proposed solution is compact and cheap; both the design and the torque controller are suitable for future integration in an exoskeleton, or a cooperative robot, or a haptic device. SVEJ works as a torque sensor and introduces compliance between the motor and the environment, enhancing safety for robotic devices interacting with humans.


Assuntos
Sistemas Homem-Máquina , Robótica , Torque , Desenho de Equipamento , Exoesqueleto Energizado , Humanos , Silicones
11.
Front Robot AI ; 7: 595862, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33537345

RESUMO

Soft exosuits are a promising solution for the assistance and augmentation of human motor abilities in the industrial field, where the use of more symbiotic wearable robots can avoid excessive worker fatigue and improve the quality of the work. One of the challenges in the design of soft exosuits is the choice of the right amount of softness to balance load transfer, ergonomics, and weight. This article presents a cable-driven based soft wrist exosuit for flexion assistance with the use of an ergonomic reinforced glove. The flexible and highly compliant three-dimensional (3D)-printed plastic structure that is sewn on the glove allows an optimal force transfer from the remotely located motor to the wrist articulation and to preserve a high level of comfort for the user during assistance. The device is shown to reduce fatigue and the muscular effort required for holding and lifting loads in healthy subjects for weights up to 3 kg.

12.
Front Neurorobot ; 13: 99, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849635

RESUMO

It is important for rehabilitation exoskeletons to move with a spatiotemporal motion patterns that well match the upper-limb joint kinematic characteristics. However, few efforts have been made to manipulate the motion control based on human kinematic synergies. This work analyzed the spatiotemporal kinematic synergies of right arm reaching movement and investigated their potential usage in upper limb assistive exoskeleton motion planning. Ten right-handed subjects were asked to reach 10 target button locations placed on a cardboard in front. The kinematic data of right arm were tracked by a motion capture system. Angular velocities over time for shoulder flexion/extension, shoulder abduction/adduction, shoulder internal/external rotation, and elbow flexion/extension were computed. Principal component analysis (PCA) was used to derive kinematic synergies from the reaching task for each subject. We found that the first four synergies can explain more than 94% of the variance. Moreover, the joint coordination patterns were dynamically regulated over time as the number of kinematic synergy (PC) increased. The synergies with different order played different roles in reaching movement. Our results indicated that the low-order synergies represented the overall trend of motion patterns, while the high-order synergies described the fine motions at specific moving phases. A 4-DoF upper limb assistive exoskeleton was modeled in SolidWorks to simulate assistive exoskeleton movement pattern based on kinematic synergy. An exoskeleton Denavit-Hartenberg (D-H) model was established to estimate the exoskeleton moving pattern in reaching tasks. The results further confirmed that kinematic synergies could be used for exoskeleton motion planning, and different principal components contributed to the motion trajectory and end-point accuracy to some extent. The findings of this study may provide novel but simplified strategies for the development of rehabilitation and assistive robotic systems approximating the motion pattern of natural upper-limb motor function.

13.
IEEE Int Conf Rehabil Robot ; 2019: 618-624, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31374699

RESUMO

In this paper, we present a prototype of an innovative portable shoulder exoskeleton for human assistance and augmentation. The device provides torques to flexion/extension movements of the shoulder, compensating for gravitational forces, and is passively compliant along the remaining degrees of freedom letting the shoulder moving along them. The novelty of our system is a flexible link, made of a hyper-redundant passive structure, that avoids joint misalignment by adapting to the complex movements of the humerus head, similarly to a soft component. The flexible link is compliant to rotations around one axis but rigid around the other two axes, allowing transmission of flexion/extension torque but kinematically transparent along the remaining degrees of freedom. The device is light weight and allows to cover around the 82% of the shoulder flexion/extension range of motion. The exoskeleton was tested on a cohort of 5 healthy subjects, monitoring shoulder kinematics, interaction forces and acquiring the electromyography of three major muscles contributing to shoulder flexion. During both static postures and dynamic movements, assistance from the exoskeleton resulted in a significant reduction of muscular effort in the anterior (-32.2% in static, -25.3% in dynamic) and medial deltoid (56.9% in static, -49.6% in dynamic) and an average reduction of the biceps brachii.


Assuntos
Exoesqueleto Energizado , Tecnologia Assistiva , Ombro/fisiologia , Adulto , Fenômenos Biomecânicos , Eletromiografia , Desenho de Equipamento , Humanos , Cinética , Masculino , Músculo Esquelético/fisiologia
14.
IEEE Int Conf Rehabil Robot ; 2019: 1127-1132, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31374781

RESUMO

The use of robotic devices to provide active motor support and sensory feedback of ongoing motor intention, by means of a Brain Computer Interface (BCI), has received growing support by recent literature, with particular focus on neurorehabilitation therapies. At the same time, performance in the use of the BCI has become a more critical factor, since it directly influences congruency and consistency of the provided sensory feedback. As motor imagery is the mental simulation of a given movement without depending on residual function, training of patients in the use of motor imagery BCI can be extended beyond each rehabilitation session, and practiced by using simpler devices than rehabilitation robots available in the hospital. In this work, we investigated the use of haptic stimulation provided by vibrating electromagnetic motors to enhance BCI system training. The BCI is based on motor imagery of hand grasping and designed to operate a hand exoskeleton. We investigated whether haptic stimulation at fingerpads proves to be more effective than stimulation at wrist, already experimented in literature, due to the higher density of mechano-receptors. Our results did not show significant differences between the two body locations in BCI performance, yet a wider and more stable event-relateddesynchronization appeared for the finger-located stimulation. Future investigations will put in relation training with haptic feedback at fingerpads with BCI performance using the handexoskeleton, in grasping tasks that naturally involve haptic feedback at fingerpads.


Assuntos
Exoesqueleto Energizado , Mãos/fisiologia , Interfaces Cérebro-Computador , Retroalimentação Sensorial/fisiologia , Força da Mão/fisiologia , Humanos , Punho/fisiologia
15.
IEEE Trans Haptics ; 12(4): 400-413, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31251193

RESUMO

Most current hand exoskeletons have been designed specifically for rehabilitation, assistive, or haptic applications to simplify the design requirements. Clinical studies on poststroke rehabilitation have shown that adapting assistive or haptic applications into physical therapy sessions significantly improves the motor learning and treatment process. The recent technology can lead to the creation of generic hand exoskeletons that are application-agnostic. In this paper, our motivation is to create guidelines and best practices for generic exoskeletons by reviewing the literature of current devices. First, we describe each application and briefly explain their design requirements, and then list the design selections to achieve these requirements. Then, we detail each selection by investigating the existing exoskeletons based on their design choices, and by highlighting their impact on application types. With the motivation of creating efficient generic exoskeletons in the future, we finally summarize the best practices in the literature.


Assuntos
Desenho de Equipamento , Exoesqueleto Energizado , Mãos , Humanos
16.
J Neuroeng Rehabil ; 16(1): 29, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30791919

RESUMO

BACKGROUND: Soft wearable robots (exosuits), being lightweight, ergonomic and low power-demanding, are attractive for a variety of applications, ranging from strength augmentation in industrial scenarios, to medical assistance for people with motor impairments. Understanding how these devices affect the physiology and mechanics of human movements is fundamental for quantifying their benefits and drawbacks, assessing their suitability for different applications and guiding a continuous design refinement. METHODS: We present a novel wearable exosuit for assistance/augmentation of the elbow and introduce a controller that compensates for gravitational forces acting on the limb while allowing the suit to cooperatively move with its wearer. Eight healthy subjects wore the exosuit and performed elbow movements in two conditions: with assistance from the device (powered) and without assistance (unpowered). The test included a dynamic task, to evaluate the impact of the assistance on the kinematics and dynamics of human movement, and an isometric task, to assess its influence on the onset of muscular fatigue. RESULTS: Powered movements showed a low but significant degradation in accuracy and smoothness when compared to the unpowered ones. The degradation in kinematics was accompanied by an average reduction of 59.20±5.58% (mean ± standard error) of the biological torque and 64.8±7.66% drop in muscular effort when the exosuit assisted its wearer. Furthermore, an analysis of the electromyographic signals of the biceps brachii during the isometric task revealed that the exosuit delays the onset of muscular fatigue. CONCLUSIONS: The study examined the effects of an exosuit on the characteristics of human movements. The suit supports most of the power needed to move and reduces the effort that the subject needs to exert to counteract gravity in a static posture, delaying the onset of muscular fatigue. We interpret the decline in kinematic performance as a technical limitation of the current device. This work suggests that a powered exosuit can be a good candidate for industrial and clinical applications, where task efficiency and hardware transparency are paramount.


Assuntos
Braço/fisiologia , Exoesqueleto Energizado , Movimento/fisiologia , Robótica , Adulto , Fenômenos Biomecânicos , Cotovelo/fisiologia , Eletromiografia , Feminino , Músculos Isquiossurais/fisiologia , Humanos , Contração Isométrica , Masculino , Fadiga Muscular/fisiologia , Desenho de Prótese , Tecnologia Assistiva , Torque , Dispositivos Eletrônicos Vestíveis
17.
Front Neurorobot ; 12: 74, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483090

RESUMO

The growing interest of the industry production in wearable robots for assistance and rehabilitation purposes opens the challenge for developing intuitive and natural control strategies. Myoelectric control, or myo-control, which consists in decoding the human motor intent from muscular activity and its mapping into control outputs, represents a natural way to establish an intimate human-machine connection. In this field, model based myo-control schemes (e.g., EMG-driven neuromusculoskeletal models, NMS) represent a valid solution for estimating the moments of the human joints. However, a model optimization is needed to adjust the model's parameters to a specific subject and most of the optimization approaches presented in literature consider complex NMS models that are unsuitable for being used in a control paradigm since they suffer from long-lasting setup and optimization phases. In this work we present a minimal NMS model for predicting the elbow and shoulder torques and we compare two optimization approaches: a linear optimization method (LO) and a non-linear method based on a genetic algorithm (GA). The LO optimizes only one parameter per muscle, whereas the GA-based approach performs a deep customization of the muscle model, adjusting 12 parameters per muscle. EMG and force data have been collected from 7 healthy subjects performing a set of exercises with an arm exoskeleton. Although both optimization methods substantially improved the performance of the raw model, the findings of the study suggest that the LO might be beneficial with respect to GA as the latter is much more computationally heavy and leads to minimal improvements with respect to the former. From the comparison between the two considered joints, it emerged also that the more accurate the NMS model is, the more effective a complex optimization procedure could be. Overall, the two optimized NMS models were able to predict the shoulder and elbow moments with a low error, thus demonstrating the potentiality for being used in an admittance-based myo-control scheme. Thanks to the low computational cost and to the short setup phase required for wearing and calibrating the system, obtained results are promising for being introduced in industrial or rehabilitation real time scenarios.

18.
J Healthc Eng ; 2018: 7438609, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30154992

RESUMO

The use of robotic rehabilitation in orthopaedics has been briefly explored. Despite its possible advantages, the use of computer-assisted physiotherapy of patients with musculoskeletal injuries has received little attention. In this paper, we detailed the development and evaluation of a robotic-assisted rehabilitation system as a new methodology of assisted physiotherapy in orthopaedics. The proposal consists of an enhanced end-effector haptic interface mounted in a passive mechanism for allowing patients to perform upper-limb exercising and integrates virtual reality games conceived explicitly for assisting the treatment of the forearm after injuries at the wrist or elbow joints. The present methodology represents a new approach to assisted physiotherapy for strength and motion recovery of wrist pronation/supination and elbow flexion-extension movements. We design specific game scenarios enriched by proprioceptive and haptic force feedback in three training modes: passive, active, and assisted exercising. The system allows the therapist to tailor the difficulty level on the observed motion capacity of the patients and the kinesiology measurements provided by the system itself. We evaluated the system through the analysis of the muscular activity of two healthy subjects, showing that the system can assign significant working loads during typical physiotherapy treatment profiles. Subsequently, a group of ten patients undergoing manual orthopaedic rehabilitation of the forearm tested the system, under similar conditions at variable intensities. Patients tolerated changes in difficulty through the tests, and they expressed a favourable opinion of the system through the administered questionnaires, which indicates that the system was well accepted and that the proposed methodology was feasible for the case study for subsequently controlled trials. Finally, a predictive model of the performance score in the form of a linear combination of kinesiology observations was implemented in function of difficult training parameters, as a way of systematically individualising the training during the therapy, for subsequent studies.


Assuntos
Articulação do Cotovelo/fisiologia , Ortopedia/métodos , Modalidades de Fisioterapia/instrumentação , Robótica , Realidade Virtual , Articulação do Punho/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Calibragem , Computadores , Articulação do Cotovelo/fisiopatologia , Desenho de Equipamento , Exercício Físico , Retroalimentação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Análise de Componente Principal , Estresse Mecânico , Reabilitação do Acidente Vascular Cerebral , Extremidade Superior/fisiopatologia , Interface Usuário-Computador , Articulação do Punho/fisiopatologia , Adulto Jovem
19.
IEEE Trans Neural Syst Rehabil Eng ; 26(7): 1469-1478, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29985156

RESUMO

The past decade has seen the emergence of rehabilitation treatments using virtual reality (VR) environments although translation into clinical practice has been limited so far. In this paper, an immersive VR rehabilitation training system endowed with wearable haptics is proposed for children with neuromotor impairments: it aims to enhance involvement and engagement of patients, to provide congruent multi-sensory afferent feedback during motor exercises and to benefit from the flexibility of VR in adapting exercises to the patient's need. An experimental rehabilitation session conducted with children with cerebral palsy (CP) and developmental dyspraxia (DD) has been performed to evaluate the usability of the system and proof of concept trial of the proposed approach. We compared CP/DD performance with both typically developing children and adult control group. Results show the system was compliant with different levels of motor skills and allowed patients to complete the experimental rehabilitation session, with performance varying according to the expected motor abilities of different groups. Moreover, a kinematic assessmentbased on the presented system has been designed. Obtained results reflected different motor abilities of patients and participants, suggesting suitability of the proposed kinematic assessment as a motor function outcome.


Assuntos
Neuropatia Hereditária Motora e Sensorial/reabilitação , Realidade Virtual , Dispositivos Eletrônicos Vestíveis , Adolescente , Apraxias/reabilitação , Fenômenos Biomecânicos , Paralisia Cerebral/reabilitação , Criança , Pré-Escolar , Retroalimentação Sensorial , Feminino , Jogos Experimentais , Voluntários Saudáveis , Humanos , Masculino , Destreza Motora , Desempenho Psicomotor , Tecnologia Assistiva , Interface Usuário-Computador
20.
IEEE Trans Neural Syst Rehabil Eng ; 26(1): 105-114, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28809705

RESUMO

BACKGROUND AND OBJECTIVES: Feedback plays a crucial role for using brain computer interface systems. This paper proposes the use of vibration-evoked kinaesthetic illusions as part of a novel multisensory feedback for a motor imagery (MI)-based BCI and investigates its contributions in terms of BCI performance and electroencephalographic (EEG) correlates. METHODS: sixteen subjects performed two different right arm MI-BCI sessions: with the visual feedback only and with both visual and vibration-evoked kinaesthetic feedback, conveyed by the stimulation of the biceps brachi tendon. In both conditions, the sensory feedback was driven by the MI-BCI. The rich and more natural multisensory feedback was expected to facilitate the execution of MI, and thus to improve the performance of the BCI. The EEG correlates of the proposed feedback were also investigated with and without the performing of MI. RESULTS AND CONCLUSIONS: the contribution of vibration-evoked kinaesthetic feedback led to statistically higher BCI performance (Anova, F(1,14) = 18.1, p < .01) and more stable EEG event-related-desynchronization. Obtained results suggest promising application of the proposed method in neuro-rehabilitation scenarios: the advantage of an improved usability could make the MI-BCIs more applicable for those patients having difficulties in performing kinaesthetic imagery.


Assuntos
Interfaces Cérebro-Computador , Retroalimentação , Imaginação/fisiologia , Cinestesia/fisiologia , Tendões/fisiologia , Adulto , Algoritmos , Braço/fisiologia , Interpretação Estatística de Dados , Eletroencefalografia , Potenciais Evocados/fisiologia , Retroalimentação Sensorial/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Desempenho Psicomotor/fisiologia , Vibração , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...