Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Breath Res ; 17(3)2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37211879

RESUMO

An accurate cannabis breathalyzer based on quantitation of the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) could be an important tool for deterring impaired driving. Such a device does not exist. Simply translating what is known about alcohol breathalyzers is insufficient because ethanol is detected as a vapor. THC has extremely low volatility and is hypothesized to be carried in breath by aerosol particles formed from lung surfactant. Exhaled breath aerosols can be recovered from electrostatic filter devices, but consistent quantitative results across multiple studies have not been demonstrated. We used a simple-to-use impaction filter device to collect breath aerosols from participants before and after they smoked a legal market cannabis flower containing ∼25% Δ9-tetrahydrocannabinolic acid. Breath collection occurred at an intake session (baseline-intake) and four weeks later in a federally-compliant mobile laboratory 15 min before (baseline-experimental) and 1 h after cannabis use (post-use). Cannabis use was in the participant's residence. Participants were asked to follow a breathing maneuver designed to increase aerosol production. Breath extracts were analyzed by liquid chromatography with tandem mass spectrometry with multiple reaction monitoring of two transitions for analytes and their deuterated internal standards. Over more than 1 yr, 42 breath samples from 18 participants were collected and analyzed in six batches. THC was quantified in 31% of baseline-intake, 36% of baseline-experimental, and 80% of 1 h post-use breath extracts. The quantities observed 1 h post-use are compared to those reported in six other pilot studies that sampled breath at known intervals following cannabis use and are discussed with respect to participant characteristics and breath sampling protocols. Larger studies with verified abstinence and more post-use timepoints are necessary to generate statistically significant data to develop meaningful cannabis breathalyzer technology.


Assuntos
Canabinoides , Cannabis , Fumar Maconha , Humanos , Projetos Piloto , Testes Respiratórios , Canabinoides/análise , Cannabis/química , Aerossóis , Etanol , Dronabinol/análise
2.
Forensic Sci Int ; 336: 111315, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35504094

RESUMO

Dynamic vapor microextraction (DVME) is a headspace concentration method that can be used to collect ignitable liquid (IL) from fire debris onto chilled adsorbent capillaries. Unlike passive headspace concentration onto activated carbon strips (ACSs) that must be eluted with a toxic solvent (carbon disulfide), DVME employs a relatively benign solvent (acetone) to recover the adsorbed IL residue, and each headspace collection is monitored for breakthrough. Here, for the first time, we extend DVME to casework containers while exploring a realistic range of oven temperatures and collection volumes. We investigated metal cans sealed with friction lids (container 1), metal cans sealed within polymer bags (container 2), and glass jars sealed with two-piece lids (container 3). Without additional containment, container 1 was found to leak so excessively that flow through the capillary was unreliable. Therefore, for containers 2 and 3 only, we determined the total number of target compounds collected from 50% weathered gasoline for oven temperatures from 54 °C to 96 °C and collection volumes from 47 standard cubic centimeters (scc) to 90 scc. Only high-volatility species with retention times (tR)< n-decane on a non-polar column were recovered from polymer bags, whereas headspace concentration from glass jars led to the recovery of target compounds across the entire volatility range. DVME at 90 °C from 2-mL containers showed that the presence of polymer bag material leads to IL vapor losses, particularly for low-volatility species with tR> n-decane. DVME was strongly influenced by the casework container, whereas oven temperature and collection volume had a minor influence for the IL samples explored here.


Assuntos
Gases , Vidro , Polímeros , Solventes/química , Temperatura
3.
Opt Lett ; 43(21): 5343-5346, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30383003

RESUMO

A cavity-enhanced Thomson scattering (CETS) diagnostic has been developed to perform electron density and temperature measurements in low-density weakly ionized discharges. The diagnostic approach is based on generating a high-power beam in an optical build-up cavity and using the beam as a light source for Thomson scattering from plasma housed within the cavity. In our setup, a high-power (∼5 W) fiber laser at 1064 nm allows an intra-cavity power of 11.7 kW in a two-mirror cavity for measurements in the plume of a BaO hollow cathode discharge. A study of plasma density and temperature was performed at various operating conditions. Electron densities and temperatures in the range of ∼1012 cm-3 and ∼3 eV were measured, respectively. The high signal-to-noise ratio (SNR) of the present measurements (SNR=1100) suggests the ability to measure significantly lower density plasmas in the range of ∼3×109 to 3×1010 cm-3, thereby extending current laser Thomson scattering diagnostic capabilities.

4.
Opt Lett ; 41(14): 3193-6, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27420493

RESUMO

A novel cavity-enhanced laser diagnostic has been developed to perform point measurements of spontaneous rotational Raman scattering. A narrow linewidth fiber laser source (1064 nm) is frequency locked to a high-finesse cavity containing the sample gas. Intracavity powers of 22 W are generated from 3.7 mW of incident laser power, corresponding to a buildup factor of 5900. A triple monochromator and a photomultiplier tube in counting mode are used to disperse and measure the scattering spectra. The system is demonstrated with rotational Raman spectra of nitrogen, oxygen, and carbon dioxide at atmospheric pressure. The approach will allow temporally and spatially resolved Raman measurements for combustion diagnostics and, by extending to higher power, Thomson scattering for diagnostics of low-density plasmas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...