Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 24(1): 316, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605108

RESUMO

BACKGROUND: Biologists are faced with an ever-changing array of complex software tools with steep learning curves, often run on High Performance Computing platforms. To resolve the tradeoff between analytical sophistication and usability, we have designed BioLegato, a programmable graphical user interface (GUI) for running external programs. RESULTS: BioLegato can run any program or pipeline that can be launched as a command. BioLegato reads specifications for each tool from files written in PCD, a simple language for specifying GUI components that set parameters for calling external programs. Thus, adding new tools to BioLegato can be done without changing the BioLegato Java code itself. The process is as simple as copying an existing PCD file and modifying it for the new program, which is more like filling in a form than writing code. PCD thus facilitates rapid development of new applications using existing programs as building blocks, and getting them to work together seamlessly. CONCLUSION: BioLegato applies Object-Oriented concepts to the user experience by organizing applications based on discrete data types and the methods relevant to that data. PCD makes it easier for BioLegato applications to evolve with the succession of analytical tools for bioinformatics. BioLegato is applicable not only in biology, but in almost any field in which disparate software tools need to work as an integrated system.


Assuntos
Biologia Computacional , Idioma , Software , Redação
2.
Artigo em Inglês | MEDLINE | ID: mdl-36768092

RESUMO

Artificial intelligence (AI) and machine learning (ML) facilitate the creation of revolutionary medical techniques. Unfortunately, biases in current AI and ML approaches are perpetuating minority health inequity. One of the strategies to solve this problem is training a diverse workforce. For this reason, we created the course "Artificial Intelligence and Machine Learning applied to Health Disparities Research (AIML + HDR)" which applied general Data Science (DS) approaches to health disparities research with an emphasis on Hispanic populations. Some technical topics covered included the Jupyter Notebook Framework, coding with R and Python to manipulate data, and ML libraries to create predictive models. Some health disparities topics covered included Electronic Health Records, Social Determinants of Health, and Bias in Data. As a result, the course was taught to 34 selected Hispanic participants and evaluated by a survey on a Likert scale (0-4). The surveys showed high satisfaction (more than 80% of participants agreed) regarding the course organization, activities, and covered topics. The students strongly agreed that the activities were relevant to the course and promoted their learning (3.71 ± 0.21). The students strongly agreed that the course was helpful for their professional development (3.76 ± 0.18). The open question was quantitatively analyzed and showed that seventy-five percent of the comments received from the participants confirmed their great satisfaction.


Assuntos
Inteligência Artificial , Ciência de Dados , Recursos Humanos , Humanos , Hispânico ou Latino , Aprendizado de Máquina , Pesquisa Biomédica
3.
J Fungi (Basel) ; 7(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924147

RESUMO

Rhodotorula diobovata is an oleaginous and carotenogenic yeast, useful for diverse biotechnological applications. To understand the molecular basis of its potential applications, the genome was sequenced using the Illumina MiSeq and Ion Torrent platforms, assembled by AbySS, and annotated using the JGI annotation pipeline. The genome size, 21.1 MB, was similar to that of the biotechnological "workhorse", R. toruloides. Comparative analyses of the R. diobovata genome sequence with those of other Rhodotorula species, Yarrowia lipolytica, Phaffia rhodozyma, Lipomyces starkeyi, and Sporidiobolus salmonicolor, were conducted, with emphasis on the carotenoid and neutral lipid biosynthesis pathways. Amino acid sequence alignments of key enzymes in the lipid biosynthesis pathway revealed why the activity of malic enzyme and ATP-citrate lyase may be ambiguous in Y. lipolytica and L. starkeyi. Phylogenetic analysis showed a close relationship between R. diobovata and R. graminis WP1. Dot-plot analysis of the coding sequences of the genes crtYB and ME1 corroborated sequence homologies between sequences from R. diobovata and R. graminis. There was, however, nonsequential alignment between crtYB CDS sequences from R. diobovata and those from X. dendrorhous. This research presents the first genome analysis of R. diobovata with a focus on its biotechnological potential as a lipid and carotenoid producer.

4.
Can J Microbiol ; 65(6): 421-428, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30694700

RESUMO

Caldibacillus debilis strains GB1 and Tf display distinct phenotypes. Caldibacillus debilis GB1 is capable of anaerobic growth and can synthesize ethanol while C. debilis Tf cannot. Comparison of the GB1 and Tf genome sequences revealed that the genomes were highly similar in gene content and showed a high level of synteny. At the genome scale, there were several large sections of DNA that appeared to be from lateral gene transfer into the GB1 genome. Tf did have unique genetic content but at a much smaller scale: 300 genes in Tf verses 857 genes in GB1 that matched at ≤90% sequence similarity. Gene complement and copy number of genes for the glycolysis, tricarboxylic acid cycle, and electron transport chain pathways were identical in both strains. While Tf is an obligate aerobe, it possesses the gene complement for an anaerobic lifestyle (ldh, ak, pta, adhE, pfl). As a species, other strains of C. debilis should be expected to have the potential for anaerobic growth. Assaying the whole cell lysate for alcohol dehydrogenase activity revealed an approximately 2-fold increase in the enzymatic activity in GB1 when compared with Tf.


Assuntos
Bacillaceae/genética , Genoma Bacteriano , Bacillaceae/classificação , Bacillaceae/fisiologia , Genômica , Glicólise , Oxirredução , Especificidade da Espécie
5.
Extremophiles ; 22(6): 965-974, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30182148

RESUMO

A metabolic, genomic and proteomic assessment of Fervidobacterium pennivorans strains was undertaken to clarify the metabolic and genetic capabilities of this Thermotogales species. The type strain Ven5 originally isolated from a hot mud spa in Italy, and a newly isolated strain (DYC) from a hot spring at Ngatamariki, New Zealand, were compared for metabolic and genomic differences. The fermentation profiles of both strains on cellobiose generated similar major end products (acetate, alanine, glutamate, H2, and CO2). The vast majority of end products produced were redox neutral, and carbon balances were in the range of 95-115%. Each strain showed distinct fermentation profiles on sugar substrates. The genome of strain DYC was sequenced and shown to have high sequence similarity and synteny with F. pennivorans Ven5 genome, suggesting they are the same species. The unique genome regions in Ven5, corresponded to genes involved in the Entner-Doudoroff pathway confirming our observation of DYC's inability to utilize gluconate. Genome analysis was able to elucidate pathways involved in production of the observed end-products with the exception of alanine and glutamate synthesis which were resolved with less clarity due to poor sequence identity and missing critical enzymes within the pathway, respectively.


Assuntos
Fermentação , Genoma Bacteriano , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/metabolismo , Açúcares/metabolismo , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/classificação , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/genética , Especificidade por Substrato , Termotolerância
6.
Extremophiles ; 22(2): 203-209, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29380170

RESUMO

This study characterizes a cryptic (pro)phage-related sequence within the Caldibacillus debilis GB1 genome, designated CBP1.CBP1 is a Siphoviridae-like genome highly related to GBVS1 from Geobacillus sp. 6k51. The CBP1genome is a 37,315 bp region containing 69 putative ORFs with a GC content of 42% flanked on both sides by host DNA integrated into the main bacterial chromosome (contig 16). Bioinformatic analyses identified cassettes of genes within the CBP1 genome that were similar in function, yet distinct in sequence, from genes previously identified in GBVS1. All of CBP1 genes had less than 60% amino acid sequence identity with GBVS1by tBLASTx, with the exception of the TMP repeat gene. CBP1 possessed all the necessary genes to undergo a temperate/lytic phage life cycle, including excision, replication, structural genes, DNA packaging, and cell lyses. Proteomic analysis of CBP1 revealed the expression of 5 proteins. One of the expressed proteins was a transcriptional regulator protein homologous to the bacteriophage λ repressor protein (cI) expressed in high amounts from the CBP1 region, consistent with a lysogenic phage in a repressed state. The CBP1 protein expression profile during host growth provides unique insight into thermophilic Siphoviridae-like phages in the repressed state within their host cells.


Assuntos
Bacillaceae/virologia , Genoma Viral , Prófagos/genética , Fases de Leitura Aberta , Prófagos/fisiologia , Termotolerância , Proteínas Virais/genética , Proteínas Virais/metabolismo
7.
Syst Appl Microbiol ; 40(5): 245-253, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28527624

RESUMO

Caldibacillus debilis GB1 is a facultative anaerobe isolated from a thermophilic aero-tolerant cellulolytic enrichment culture. There is a lack of representative proteomes of facultative anaerobic thermophilic Bacillaceae, exploring aerobic/anaerobic expression. The C. debilis GB1 genome was sequenced and annotated, and the proteome characterized under aerobic and anaerobic conditions while grown on cellobiose. The draft sequence of C. debilis GB1 contains a 3,340,752 bp chromosome and a 5,386 bp plasmid distributed over 49 contigs. Two-dimensional liquid chromatography mass spectrometry/mass spectrometry was used with Isobaric Tags for Relative and Absolute Quantification (iTRAQ) to compare protein expression profiles, focusing on energy production and conversion pathways. Under aerobic conditions, proteins in glycolysis and pyruvate fermentation pathways were down-regulated. Simultaneously, proteins within the tricarboxylic acid cycle, pyruvate dehydrogenase, the electron transport chain, and oxygen scavenging pathways showed increased amounts. Under anaerobic conditions, protein levels in fermentation pathways were consistent with the generated end-products: formate, acetate, ethanol, lactate, and CO2. Under aerobic conditions CO2 and acetate production was consistent with incomplete respiration. Through a direct comparison with gene expression profiles from Escherichia coli, we show that global regulation of core metabolism pathways is similar in thermophilic and mesophilic facultative anaerobes of the Phylum Proteobacteria and Firmicutes.


Assuntos
Bacillaceae/genética , Bacillaceae/metabolismo , Metabolismo Energético/fisiologia , Fermentação/fisiologia , Glicólise/fisiologia , Aerobiose/fisiologia , Anaerobiose/fisiologia , Ciclo do Ácido Cítrico/genética , Ciclo do Ácido Cítrico/fisiologia , Metabolismo Energético/genética , Escherichia coli/metabolismo , Fermentação/genética , Perfilação da Expressão Gênica , Genoma Bacteriano/genética , Glicólise/genética
8.
PLoS One ; 10(11): e0142322, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26544181

RESUMO

Transcriptomes and proteomes of Pseudomonas putida LS46 cultured with biodiesel-derived waste glycerol or waste free fatty acids, as sole carbon sources, were compared under conditions that were either permissive or non-permissive for synthesis of medium chain length polyhydroxyalkanoates (mcl-PHA). The objectives of this study were to elucidate mechanisms that influence activation of biopolymer synthesis, intra-cellular accumulation, and monomer composition, and determine if these were physiologically specific to the carbon sources used for growth of P. putida LS46. Active mcl-PHA synthesis by P. putida LS46 was associated with high expression levels of key mcl-PHA biosynthesis genes and/or gene products including monomer-supplying proteins, PHA synthases, and granule-associated proteins. 'Omics data suggested that expression of these genes were regulated by different genetic mechanisms in P. putida LS46 cells in different physiological states, when cultured on the two waste carbon sources. Optimal polymer production by P. putida LS46 was primarily limited by less efficient glycerol metabolism during mcl-PHA synthesis on waste glycerol. Mapping the 'Omics data to the mcl-PHA biosynthetic pathway revealed significant variations in gene expression, primarily involved in: 1) glycerol transportation; 2) enzymatic reactions that recycle reducing equivalents and produce key mcl-PHA biosynthesis pathway intermediates (e.g. NADH/NADPH, acetyl-CoA). Active synthesis of mcl-PHAs was observed during exponential phase in cultures with waste free fatty acids, and was associated with the fatty acid beta-oxidation pathway. A putative Thioesterase in the beta-oxidation pathway that may regulate the level of fatty acid beta-oxidation intermediates, and thus carbon flux to mcl-PHA biosynthesis, was highly up-regulated. Finally, the data suggested that differences in expression of selected fatty acid metabolism and mcl-PHA monomer-supplying enzymes may play a role in determining the monomer composition of mcl-PHA polymers. Understanding the relationships between genome content, gene and gene product expression, and how these factors influence polymer synthesis, will aid in optimization of mcl-PHA production by P. putida LS46 using biodiesel waste streams.


Assuntos
Biocombustíveis , Ácidos Graxos/metabolismo , Glicerol/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Pseudomonas putida/genética , Técnicas de Cultura , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Poli-Hidroxialcanoatos/genética , Proteômica , Pseudomonas putida/metabolismo
9.
Genome Announc ; 3(4)2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26227594

RESUMO

Bradyrhizobium japonicum strain FN1 was found to produce bacteriocin-like zones of clearing when tested against other strains of bradyrhizbia. The genome was sequenced, and several putative bacteriocin-producing genes, in addition to the expected genes involved in nodulation and nitrogen fixation, were identified.

10.
Appl Microbiol Biotechnol ; 99(13): 5583-92, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26002633

RESUMO

Biodiesel production-derived waste glycerol (WG) was previously investigated as potential carbon source for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas putida LS46. In this study, we evaluated the effect of impurities in the WG on P. putida LS46 physiology during exponential growth and corresponding changes in transcription and protein expression profiles compared with cells grown on pure, reagent grade glycerol. High concentration of metal ions, such as Na(+), and numbers of heavy metals ion, such as copper, ion, zinc, were detected in biodiesel-derived WG. Omics analysis from the corresponding cultures suggested altered expression of genes involved in transport and metabolism of ammonia and heavy metal ions. Expression of three groups of heavy metal homeostasis genes was significantly changed (mostly upregulated) in WG cultures and included the following: copper-responded cluster 1 and 2 genes, primarily containing cusABC; two copies of copAB and heavy metal translocating P-type ATPase; Fur-regulated, TonB-dependent siderophore receptor; and several cobalt/zinc/cadmium transporters. Expression of these genes suggests regulation of intracellular concentrations of heavy metals during growth on biodiesel-derived glycerol. Finally, a number of genes involved in adapting to, or metabolizing free fatty acids and other nonheavy metal contaminants, such as Na(+), were also upregulated in P. putida LS46 grown on biodiesel-derived glycerol.


Assuntos
Biocombustíveis , Poluentes Ambientais/metabolismo , Glicerol/metabolismo , Metais Pesados/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Pseudomonas putida/crescimento & desenvolvimento , Pseudomonas putida/genética , Amônia/metabolismo , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Proteoma/análise , Pseudomonas putida/metabolismo
11.
AMB Express ; 4: 37, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25401060

RESUMO

A novel strain of Pseudomonas putida LS46 was isolated from wastewater on the basis of its ability to synthesize medium chain-length polyhydroxyalkanoates (mcl-PHAs). P.putida LS46 was differentiated from other P.putida strains on the basis of cpn60 (UT). The complete genome of P.putida LS46 was sequenced and annotated. Its chromosome is 5,86,2556 bp in size with GC ratio of 61.69. It is encoding 5316 genes, including 7 rRNA genes and 76 tRNA genes. Nucleotide sequence data of the complete P. putida LS46 genome was compared with nine other P. putida strains (KT2440, F1, BIRD-1, S16, ND6, DOT-T1E, UW4, W619 and GB-1) identified either as biocontrol agents or as bioremediation agents and isolated from different geographical region and different environment. BLASTn analysis of whole genome sequences of the ten P. putida strains revealed nucleotide sequence identities of 86.54 to 97.52%. P.putida genome arrangement was LS46 highly similar to P.putida BIRD1 and P.putida ND6 but was markedly different than P.putida DOT-T1E, P.putida UW4 and P.putida W619. Fatty acid biosynthesis (fab), fatty acid degradation (fad) and PHA synthesis genes were highly conserved among biocontrol and bioremediation P.putida strains. Six genes in pha operon of P. putida LS46 showed >98% homology at gene and proteins level. It appears that polyhydroxyalkanoate (PHA) synthesis is an intrinsic property of P. putida and was not affected by its geographic origin. However, all strains, including P. putida LS46, were different from one another on the basis of house keeping genes, and presence of plasmid, prophages, insertion sequence elements and genomic islands. While P. putida LS46 was not selected for plant growth promotion or bioremediation capacity, its genome also encoded genes for root colonization, pyoverdine synthesis, oxidative stress (present in other soil isolates), degradation of aromatic compounds, heavy metal resistance and nicotinic acid degradation, manganese (Mn II) oxidation. Genes for toluene or naphthalene degradation found in the genomes of P. putida F1, DOT-T1E, and ND6 were absent in the P. putida LS46 genome. Heavy metal resistant genes encoded by the P. putida W619 genome were also not present in the P. putida LS46 genome. Despite the overall similarity among genome of P.putida strains isolated for different applications and from different geographical location a number of differences were observed in genome arrangement, occurrence of transposon, genomic islands and prophage. It appears that P.putida strains had a common ancestor and by acquiring some specific genes by horizontal gene transfer it differed from other related strains.

12.
BMC Bioinformatics ; 15: 318, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25260372

RESUMO

BACKGROUND: Metabolic networks are represented by the set of metabolic pathways. Metabolic pathways are a series of biochemical reactions, in which the product (output) from one reaction serves as the substrate (input) to another reaction. Many pathways remain incompletely characterized. One of the major challenges of computational biology is to obtain better models of metabolic pathways. Existing models are dependent on the annotation of the genes. This propagates error accumulation when the pathways are predicted by incorrectly annotated genes. Pairwise classification methods are supervised learning methods used to classify new pair of entities. Some of these classification methods, e.g., Pairwise Support Vector Machines (SVMs), use pairwise kernels. Pairwise kernels describe similarity measures between two pairs of entities. Using pairwise kernels to handle sequence data requires long processing times and large storage. Rational kernels are kernels based on weighted finite-state transducers that represent similarity measures between sequences or automata. They have been effectively used in problems that handle large amount of sequence information such as protein essentiality, natural language processing and machine translations. RESULTS: We create a new family of pairwise kernels using weighted finite-state transducers (called Pairwise Rational Kernel (PRK)) to predict metabolic pathways from a variety of biological data. PRKs take advantage of the simpler representations and faster algorithms of transducers. Because raw sequence data can be used, the predictor model avoids the errors introduced by incorrect gene annotations. We then developed several experiments with PRKs and Pairwise SVM to validate our methods using the metabolic network of Saccharomyces cerevisiae. As a result, when PRKs are used, our method executes faster in comparison with other pairwise kernels. Also, when we use PRKs combined with other simple kernels that include evolutionary information, the accuracy values have been improved, while maintaining lower construction and execution times. CONCLUSIONS: The power of using kernels is that almost any sort of data can be represented using kernels. Therefore, completely disparate types of data can be combined to add power to kernel-based machine learning methods. When we compared our proposal using PRKs with other similar kernel, the execution times were decreased, with no compromise of accuracy. We also proved that by combining PRKs with other kernels that include evolutionary information, the accuracy can also also be improved. As our proposal can use any type of sequence data, genes do not need to be properly annotated, avoiding accumulation errors because of incorrect previous annotations.


Assuntos
Biologia Computacional/métodos , Redes e Vias Metabólicas , Algoritmos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Software , Máquina de Vetores de Suporte
13.
BMC Genomics ; 15: 567, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24998381

RESUMO

BACKGROUND: Growing interest in cellulolytic clostridia with potential for consolidated biofuels production is mitigated by low conversion of raw substrates to desired end products. Strategies to improve conversion are likely to benefit from emerging techniques to define molecular systems biology of these organisms. Clostridium stercorarium DSM8532T is an anaerobic thermophile with demonstrated high ethanol production on cellulose and hemicellulose. Although several lignocellulolytic enzymes in this organism have been well-characterized, details concerning carbohydrate transporters and central metabolism have not been described. Therefore, the goal of this study is to define an improved whole genome sequence (WGS) for this organism using in-depth molecular profiling by RNA-seq transcriptomics and tandem mass spectrometry-based proteomics. RESULTS: A paired-end Roche/454 WGS assembly was closed through application of an in silico algorithm designed to resolve repetitive sequence regions, resulting in a circular replicon with one gap and a region of 2 kilobases with 10 ambiguous bases. RNA-seq transcriptomics resulted in nearly complete coverage of the genome, identifying errors in homopolymer length attributable to 454 sequencing. Peptide sequences resulting from high-throughput tandem mass spectrometry of trypsin-digested protein extracts were mapped to 1,755 annotated proteins (68% of all protein-coding regions). Proteogenomic analysis confirmed the quality of annotation and improvement pipelines, identifying a missing gene and an alternative reading frame. Peptide coverage of genes hypothetically involved in substrate hydrolysis, transport and utilization confirmed multiple pathways for glycolysis, pyruvate conversion and recycling of intermediates. No sequences homologous to transaldolase, a central enzyme in the pentose phosphate pathway, were observed by any method, despite demonstrated growth of this organism on xylose and xylan hemicellulose. CONCLUSIONS: Complementary omics techniques confirm the quality of genome sequence assembly, annotation and error-reporting. Nearly complete genome coverage by RNA-seq likely indicates background DNA in RNA extracts, however these preps resulted in WGS enhancement and transcriptome profiling in a single Illumina run. No detection of transaldolase by any method despite xylose utilization by this organism indicates an alternative pathway for sedoheptulose-7-phosphate degradation. This report combines next-generation omics techniques to elucidate previously undefined features of substrate transport and central metabolism for this organism and its potential for consolidated biofuels production from lignocellulose.


Assuntos
Proteínas de Bactérias/genética , Clostridium/metabolismo , Transcriptoma , Proteínas de Bactérias/metabolismo , Metabolismo dos Carboidratos/genética , Clostridium/genética , Perfilação da Expressão Gênica , Genoma Bacteriano , Anotação de Sequência Molecular , Proteômica , Pseudogenes , Análise de Sequência de RNA , Espectrometria de Massas em Tandem
14.
Appl Environ Microbiol ; 80(5): 1602-15, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24362431

RESUMO

Thermoanaerobacter spp. have long been considered suitable Clostridium thermocellum coculture partners for improving lignocellulosic biofuel production through consolidated bioprocessing. However, studies using "omic"-based profiling to better understand carbon utilization and biofuel producing pathways have been limited to only a few strains thus far. To better characterize carbon and electron flux pathways in the recently isolated, xylanolytic strain, Thermoanaerobacter thermohydrosulfuricus WC1, label-free quantitative proteomic analyses were combined with metabolic profiling. SWATH-MS proteomic analysis quantified 832 proteins in each of six proteomes isolated from mid-exponential-phase cells grown on xylose, cellobiose, or a mixture of both. Despite encoding genes consistent with a carbon catabolite repression network observed in other Gram-positive organisms, simultaneous consumption of both substrates was observed. Lactate was the major end product of fermentation under all conditions despite the high expression of gene products involved with ethanol and/or acetate synthesis, suggesting that carbon flux in this strain may be controlled via metabolite-based (allosteric) regulation or is constrained by metabolic bottlenecks. Cross-species "omic" comparative analyses confirmed similar expression patterns for end-product-forming gene products across diverse Thermoanaerobacter spp. It also identified differences in cofactor metabolism, which potentially contribute to differences in end-product distribution patterns between the strains analyzed. The analyses presented here improve our understanding of T. thermohydrosulfuricus WC1 metabolism and identify important physiological limitations to be addressed in its development as a biotechnologically relevant strain in ethanologenic designer cocultures through consolidated bioprocessing.


Assuntos
Proteínas de Bactérias/metabolismo , Lignina/metabolismo , Thermoanaerobacter/metabolismo , Fermentação , Análise do Fluxo Metabólico , Metaboloma , Proteoma/análise
15.
PLoS One ; 8(3): e59362, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555660

RESUMO

The microbial production of ethanol from lignocellulosic biomass is a multi-component process that involves biomass hydrolysis, carbohydrate transport and utilization, and finally, the production of ethanol. Strains of the genus Thermoanaerobacter have been studied for decades due to their innate abilities to produce comparatively high ethanol yields from hemicellulose constituent sugars. However, their inability to hydrolyze cellulose, limits their usefulness in lignocellulosic biofuel production. As such, co-culturing Thermoanaerobacter spp. with cellulolytic organisms is a plausible approach to improving lignocellulose conversion efficiencies and yields of biofuels. To evaluate native lignocellulosic ethanol production capacities relative to competing fermentative end-products, comparative genomic analysis of 11 sequenced Thermoanaerobacter strains, including a de novo genome, Thermoanaerobacter thermohydrosulfuricus WC1, was conducted. Analysis was specifically focused on the genomic potential for each strain to address all aspects of ethanol production mentioned through a consolidated bioprocessing approach. Whole genome functional annotation analysis identified three distinct clades within the genus. The genomes of Clade 1 strains encode the fewest extracellular carbohydrate active enzymes and also show the least diversity in terms of lignocellulose relevant carbohydrate utilization pathways. However, these same strains reportedly are capable of directing a higher proportion of their total carbon flux towards ethanol, rather than non-biofuel end-products, than other Thermoanaerobacter strains. Strains in Clade 2 show the greatest diversity in terms of lignocellulose hydrolysis and utilization, but proportionately produce more non-ethanol end-products than Clade 1 strains. Strains in Clade 3, in which T. thermohydrosulfuricus WC1 is included, show mid-range potential for lignocellulose hydrolysis and utilization, but also exhibit extensive divergence from both Clade 1 and Clade 2 strains in terms of cellular energetics. The potential implications regarding strain selection and suitability for industrial ethanol production through a consolidated bioprocessing co-culturing approach are examined throughout the manuscript.


Assuntos
Proteínas de Bactérias/genética , Etanol/metabolismo , Genoma Bacteriano , Genômica , Lignina/metabolismo , Thermoanaerobacter/genética , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Biocombustíveis , Biomassa , Técnicas de Cocultura , Metabolismo Energético , Fermentação , Hidrólise , Engenharia Metabólica/métodos , Filogenia , Thermoanaerobacter/classificação , Thermoanaerobacter/enzimologia
16.
Genome Announc ; 1(2): e0015113, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23599293

RESUMO

We describe the draft genome sequence of Pseudomonas putida strain LS46, a novel isolate that synthesizes medium-chain-length polyhydroxyalkanoates. The draft genome of P. putida LS46 consists of approximately 5.86 million bp, with a G+C content of 61.69%. A total of 5,316 annotated genes and 5,219 coding sequences (CDS) were identified.

17.
Int J Comput Appl ; 57(6): 9-16, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27818582

RESUMO

BioPCD is a new language whose purpose is to simplify the creation of Graphical User Interfaces (GUIs) by biologists with minimal programming skills. The first step in developing BioPCD was to create a minimal superset of the language referred to as PCD (Pythonesque Command Description). PCD defines the core of terminals and high-level nonterminals required to describe data of almost any type. BioPCD adds to PCD the constructs necessary to describe GUI components and the syntax for executing system commands. BioPCD is implemented using JavaCC to convert the grammar into code. BioPCD is designed to be terse and readable and simple enough to be learned by copying and modifying existing BioPCD files. We demonstrate that BioPCD can easily be used to generate GUIs for existing command line programs. Although BioPCD was designed to make it easier to run bioinformatics programs, it could be used in any domain in which many useful command line programs exist that do not have GUI interfaces.

18.
BMC Bioinformatics ; 8: 54, 2007 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-17291351

RESUMO

BACKGROUND: Molecular biologists need sophisticated analytical tools which often demand extensive computational resources. While finding, installing, and using these tools can be challenging, pipelining data from one program to the next is particularly awkward, especially when using web-based programs. At the same time, system administrators tasked with maintaining these tools do not always appreciate the needs of research biologists. RESULTS: BIRCH (Biological Research Computing Hierarchy) is an organizational framework for delivering bioinformatics resources to a user group, scaling from a single lab to a large institution. The BIRCH core distribution includes many popular bioinformatics programs, unified within the GDE (Genetic Data Environment) graphic interface. Of equal importance, BIRCH provides the system administrator with tools that simplify the job of managing a multiuser bioinformatics system across different platforms and operating systems. These include tools for integrating locally-installed programs and databases into BIRCH, and for customizing the local BIRCH system to meet the needs of the user base. BIRCH can also act as a front end to provide a unified view of already-existing collections of bioinformatics software. Documentation for the BIRCH and locally-added programs is merged in a hierarchical set of web pages. In addition to manual pages for individual programs, BIRCH tutorials employ step by step examples, with screen shots and sample files, to illustrate both the important theoretical and practical considerations behind complex analytical tasks. CONCLUSION: BIRCH provides a versatile organizational framework for managing software and databases, and making these accessible to a user base. Because of its network-centric design, BIRCH makes it possible for any user to do any task from anywhere.


Assuntos
Biologia Computacional/métodos , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Armazenamento e Recuperação da Informação/métodos , Internet , Software , Interface Usuário-Computador , Linguagens de Programação , Integração de Sistemas
19.
Plant Cell Physiol ; 45(9): 1320-4, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15509856

RESUMO

Pathogenesis-related (PR) proteins are expressed by virtually all plants in response to pathogen infection and, in many cases, in response to abiotic stresses as well and include the PR10 family. However, the precise roles of the PR10 protein family in abiotic stress responses are not clear. In this paper we report, for the first time, that the constitutive expression of a pea PR10 gene in Brassica napus enhances their germination and growth in the presence of NaCl. Our findings are discussed within the context of PR10 protein function and their utility in engineering stress tolerant crops.


Assuntos
Brassica napus/fisiologia , Germinação/fisiologia , Proteínas de Plantas/genética , Cloreto de Sódio/química , Sequência de Aminoácidos , Sequência de Bases , Brassica napus/genética , Brassica napus/metabolismo , Primers do DNA , Germinação/genética , Dados de Sequência Molecular , Pisum sativum/genética , Proteínas de Plantas/química , Proteínas de Plantas/fisiologia , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...