Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chaos ; 27(10): 103125, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29092454

RESUMO

In this work, we consider a ring of coupled electronic (Wien-bridge) oscillators from a perspective combining modeling, simulation, and experimental observation. Following up on earlier work characterizing the pairwise interaction of Wien-bridge oscillators by Kuramoto-Sakaguchi phase dynamics, we develop a lattice model for a chain thereof, featuring an exponentially decaying spatial kernel. We find that for certain values of the Sakaguchi parameter α, states of traveling phase-domain fronts involving the coexistence of two clearly separated regions of distinct dynamical behavior, can establish themselves in the ring lattice. Experiments and simulations show that stationary coexistence domains of synchronization only manifest themselves with the introduction of a local impurity; here an incoherent cluster of oscillators can arise reminiscent of the chimera states in a range of systems with homogeneous oscillators and suitable nonlocal interactions between them.

2.
Phys Rev E ; 94(6-1): 062212, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28085391

RESUMO

We derive the Kuramoto-Sakaguchi model from the basic circuit equations governing two coupled Wien-bridge oscillators. A Wien-bridge oscillator is a particular realization of a tunable autonomous oscillator that makes use of frequency filtering (via an RC bandpass filter) and positive feedback (via an operational amplifier). In the past few years, such oscillators have started to be utilized in synchronization studies. We first show that the Wien-bridge circuit equations can be cast in the form of a coupled pair of van der Pol equations. Subsequently, by applying the method of multiple time scales, we derive the differential equations that govern the slow evolution of the oscillator phases and amplitudes. These equations are directly reminiscent of the Kuramoto-Sakaguchi-type models for the study of synchronization. We analyze the resulting system in terms of the existence and stability of various coupled oscillator solutions and explain on that basis how their synchronization emerges. The phase-amplitude equations are also compared numerically to the original circuit equations and good agreement is found. Finally, we report on experimental measurements of two coupled Wien-bridge oscillators and relate the results to the theoretical predictions.

3.
Opt Express ; 20(4): 4518-24, 2012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-22418211

RESUMO

Indium oxide (In2O3) films grown by thermal oxidation on MgO substrates were optically excited by femtosecond laser pulses having photon energy lower than the In2O3 bandgap. Terahertz (THz) pulse emission was observed using time domain spectroscopy. Results show that THz emission saturates at an excitation fluence of ~400 nJ/cm2. Even as two-photon absorption has been excluded, the actual emission mechanism has yet to be confirmed but is currently attributed to carriers due to weak absorption from defect levels that are driven by a strain field at the interface of the substrate and the grown film.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...