Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(28): 15352-15363, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34254612

RESUMO

Changes in the structural dynamics of double stranded (ds)DNA upon ligand binding have been linked to the mechanism of allostery without conformational change, but direct experimental evidence remains elusive. To address this, a combination of steady state infrared (IR) absorption spectroscopy and ultrafast temperature jump IR absorption measurements has been used to quantify the extent of fast (∼100 ns) fluctuations in (ds)DNA·Hoechst 33258 complexes at a range of temperatures. Exploiting the direct link between vibrational band intensities and base stacking shows that the absolute magnitude of the change in absorbance caused by fast structural fluctuations following the temperature jump is only weakly dependent on the starting temperature of the sample. The observed fast dynamics are some two orders of magnitude faster than strand separation and associated with all points along the 10-base pair duplex d(GCATATATCC). Binding the Hoechst 33258 ligand causes a small but consistent reduction in the extent of these fast fluctuations of base pairs located outside of the ligand binding region. These observations point to a ligand-induced reduction in the flexibility of the dsDNA near the binding site, consistent with an estimated allosteric propagation length of 15 Å, about 5 base pairs, which agrees well with both molecular simulation and coarse-grained statistical mechanics models of allostery leading to cooperative ligand binding.


Assuntos
DNA/química , Sítio Alostérico , Pareamento de Bases , Sequência de Bases , Bisbenzimidazol/química , Cinética , Ligantes , Modelos Moleculares , Conformação de Ácido Nucleico , Espectrofotometria Infravermelho , Temperatura
2.
Analyst ; 145(6): 2014-2024, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32051976

RESUMO

Ultrafast two-dimensional infrared (2D-IR) spectroscopy has provided valuable insights into biomolecular structure and dynamics, but recent progress in laser technology and data analysis methods have demonstrated the potential for high throughput 2D-IR measurements and analytical applications. Using 2D-IR as an analytical tool requires a different approach to data collection and analysis compared to pure research applications however and, in this review, we highlight progress towards usage of 2D-IR spectroscopy in areas relevant to biomedical, pharmaceutical and analytical molecular science. We summarise the technical and methodological advances made to date and discuss the challenges that still face 2D-IR spectroscopy as it attempts to transition from the state-of-the-art laser laboratory to the standard suite of analytical tools.


Assuntos
Proteínas/química , Espectrofotometria Infravermelho/métodos , Animais , Desenho de Equipamento , Humanos , Modelos Moleculares , Conformação Proteica , Espectrofotometria Infravermelho/instrumentação
3.
J Phys Chem B ; 123(41): 8733-8739, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31557034

RESUMO

The signaling protein calmodulin (CaM) undergoes a well-known change in secondary structure upon binding Ca2+, but the structural plasticity of the Ca2+-free apo state is linked to CaM functionality. Variable temperature studies of apo-CaM indicate two structural transitions at 46 and 58 °C that are assigned to melting of the C- and N-terminal domains, respectively, but the molecular mechanism of domain unfolding is unknown. We report temperature-jump time-resolved infrared (IR) spectroscopy experiments designed to target the first steps in the C-terminal domain melting transition of human apo-CaM. A comparison of the nonequilibrium relaxation of apo-CaM with the more thermodynamically stable holo-CaM, with 4 equiv of Ca2+ bound, shows that domain melting of apo-CaM begins on microsecond time scales with α-helix destabilization. These observations enable the assignment of previously reported dynamics of CaM on hundreds of microsecond time scales to thermally activated melting, producing a complete mechanism for thermal unfolding of CaM.


Assuntos
Cálcio/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Espectrofotometria Infravermelho/métodos , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Termodinâmica
4.
J Phys Chem B ; 123(29): 6188-6199, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31268327

RESUMO

Ultrafast time-resolved infrared spectroscopy employing nanosecond temperature-jump initiation has been used to study the melting of double-stranded (ds)DNA oligomers in the presence and absence of minor groove-binding ligand Hoechst 33258. Ligand binding to ds(5'-GCAAATTTCC-3'), which binds Hoechst 33258 in the central A-tract region with nanomolar affinity, causes a dramatic increase in the timescales for strand melting from 30 to ∼250 µs. Ligand binding also suppresses premelting disruption of the dsDNA structure, which takes place on 100 ns timescales and includes end-fraying. In contrast, ligand binding to the ds(5'-GCATATATCC-3') sequence, which exhibits an order of magnitude lower affinity for Hoechst 33258 than the A-tract motif, leads to an increase by only a factor of 5 in melting timescales and reduced suppression of premelting sequence perturbation and end-fraying. These results demonstrate a dynamic impact of the minor groove ligand on the dsDNA structure that correlates with binding strength and thermodynamic stabilization of the duplex. Moreover, the ability of the ligand to influence base pairs distant from the binding site has potential implications for allosteric communication mechanisms in dsDNA.


Assuntos
DNA/química , Espectrofotometria Infravermelho , Temperatura , Sequência de Bases , DNA/genética , DNA/metabolismo , Ligantes , Modelos Moleculares , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico
5.
Analyst ; 143(24): 6121-6134, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30484797

RESUMO

Pre-processing is an essential step in the analysis of spectral data. Mid-IR spectroscopy of biological samples is often subject to instrumental and sample specific variances which may often conceal valuable biological information. Whilst pre-processing can effectively reduce this unwanted variance, the plethora of possible processing steps has resulted in a lack of consensus in the field, often meaning that analysis outputs are not comparable. As pre-processing is specific to the sample under investigation, here we present a systematic approach for defining the optimum pre-processing protocol for biofluid ATR-FTIR spectroscopy. Using a trial-and-error based approach and a clinically relevant dataset describing control and brain cancer patients, the effects of pre-processing permutations on subsequent classification algorithms were observed, by assessing key diagnostic performance parameters, including sensitivity and specificity. It was found that optimum diagnostic performance correlated with the use of minimal binning and baseline correction, with derivative functions improving diagnostic performance most significantly. If smoothing is required, a Sovitzky-Golay approach was the preferred option in this investigation. Heavy binning appeared to reduce classification most significantly, alongside wavelet noise reduction (filter length ≥6), resulting in the lowest diagnostic performances of all pre-processing permutations tested.


Assuntos
Análise Química do Sangue/estatística & dados numéricos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/diagnóstico , Conjuntos de Dados como Assunto , Feminino , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Adulto Jovem
6.
Anal Chem ; 90(4): 2732-2740, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29359920

RESUMO

Two-dimensional infrared spectroscopy (2D-IR) is well established as a specialized, high-end technique for measuring structural and solvation dynamics of biological molecules. Recent technological developments now make it possible to acquire time-resolved 2D-IR spectra within seconds, and this opens up the possibility of screening-type applications comparing spectra spanning multiple samples. However, such applications bring new challenges associated with finding accurate, efficient methodologies to analyze large data sets in a timely, informative manner. Here, we demonstrate such an application by screening 2016 2D-IR spectra of 12 double-stranded DNA oligonucleotides obtained in the presence and absence of binding therapeutic molecule Hoechst 33258. By applying analysis of variance combined with principal component analysis (ANOVA-PCA) to 2D-IR data for the first time, we demonstrate the ability to efficiently retrieve the base composition of a DNA sequence and discriminate ligand-DNA complexes from unbound sequences. We further show accurate differentiation of the induced-fit and rigid-body binding modes that is key to identifying optimal binding interactions of Hoechst 33258, while ANOVA-PCA results across the full sequence range correlate directly with thermodynamic indicators of ligand-binding strength that require significantly longer data acquisition times to obtain.


Assuntos
DNA/química , Análise de Componente Principal , Análise de Variância , Ligantes , Espectrofotometria Infravermelho
7.
J Phys Chem Lett ; 7(14): 2838-43, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27396585

RESUMO

Encapsulation of subsite analogues of the [FeFe]-hydrogenase enzymes in supramolecular structures has been shown to dramatically increase their catalytic ability, but the molecular basis for this enhancement remains unclear. We report the results of experiments employing infrared absorption, ultrafast infrared pump-probe, and 2D-IR spectroscopy to investigate the molecular environment of Fe2(pdt)(CO)6 (pdt: propanedithiolate) [1] encapsulated in the dispersed alkane phase of a heptane-dodecyltrimethylammonium bromide-water microemulsion. It is demonstrated that 1 is partitioned between two molecular environments, one that closely resembles bulk heptane solution and a second that features direct hydrogen-bonding interactions with water molecules that penetrate the surfactant shell. Our results demonstrate that the extent of water access to the normally water-insoluble subsite analogue 1 can be tuned with micelle size, while IR spectroscopy provides a straightforward tool that can be used to measure and fine-tune the chemical environment of catalyst species in self-assembled structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...