Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 433: 128771, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35366444

RESUMO

A novel adsorptive organoclay (Intraplex A®) was developed for the in situ immobilization of per- and polyfluoroalkyl substances (PFAS) in the vadose zone. We provide the first evaluation of the effects of Intraplex A® on earthworms and plants in a PFAS-contaminated soil. Ecotoxicological tests were carried out on control soil with and without Intraplex A® (C + I and C, respectively) and PFAS-contaminated soil with and without Intraplex A® (PFAS + I and PFAS, respectively). We investigated the acute ecotoxicological effects of PFAS and Intraplex A® on the growth, reproduction and survival of earthworms (Eisenia fetida) and on plant growth (oat - Avena sativa and turnip - Brassica rapa L. silvestris). Earthworm lethality was 7.6 lower in PFAS + I than in PFAS soil. Earthworms avoided 100% C + I and PFAS + I soils, and reduced earthworms' reproduction was observed in both these soils. For both plant species, the PFAS + I soil yielded less fresh and dry shoot biomass than the PFAS soil, while root growth remained unaffected (all tests: p < 0.05). Soils with Intraplex A® had some negative effects on plants and earthworms, which must be balanced with its benefits as an in situ PFAS adsorbent.


Assuntos
Fluorocarbonos , Oligoquetos , Poluentes do Solo , Animais , Ecotoxicologia , Fluorocarbonos/toxicidade , Plantas , Solo , Poluentes do Solo/análise
2.
Sci Total Environ ; 807(Pt 3): 151066, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34673060

RESUMO

Heavy metals such as zinc cannot be degraded by microorganisms and form long contaminant plumes in groundwater. Conventional methods for remediating heavy metal-contaminated sites are for example excavation and pump-and-treat, which is expensive and requires very long operation times. This induced interest in new technologies such as in situ adsorption barriers for immobilization of heavy metal contamination. In this study, we present steps and criteria from laboratory tests to field studies, which are necessary for a successful implementation of an in situ adsorption barrier for immobilizing zinc. Groundwater and sediment samples from a contaminated site were brought to the lab, where the adsorption of zinc to Goethite nanoparticles was studied in batch and in flow-through systems mimicking field conditions. The Goethite nanoparticles revealed an in situ adsorption capacity of approximately 23 mg Zn per g Goethite. Transport experiments in sediment columns indicated an expected radius of influence of at least 2.8 m for the injection of Goethite nanoparticles. These findings were validated in a pilot-scale field study, where an in situ adsorption barrier of ca. 11 m × 6 m × 4 m was implemented in a zinc-contaminated aquifer. The injected nanoparticles were irreversibly deposited at the desired location within <24 h, and were not dislocated with the groundwater flow. Despite a constantly increasing inflow of zinc to the barrier and the short contact time between Goethite and zinc in the barrier, the dissolved zinc was effectively immobilized for ca. 90 days. Then, the zinc concentrations increased slowly downstream of the barrier, but the barrier still retained most of the zinc from the inflowing groundwater. The study demonstrated the applicability of Goethite nanoparticles to immobilize heavy metals in situ and highlights the criteria for upscaling laboratory-based determinants to field-scale.


Assuntos
Água Subterrânea , Zinco , Adsorção , Compostos Férricos , Laboratórios
3.
Environ Sci Technol ; 55(15): 10821-10831, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34288663

RESUMO

Microbial reduction of Fe(III) minerals is a prominent process in redoximorphic soils and is strongly affected by organic matter (OM). We herein determined the rate and extent of microbial reduction of ferrihydrite (Fh) with either adsorbed or coprecipitated OM by Geobacter sulfurreducens. We focused on OM-mediated effects on electron uptake and alterations in Fh crystallinity. The OM was obtained from anoxic soil columns (effluent OM, efOM) and included-unlike water-extractable OM-compounds released by microbial activity under anoxic conditions. We found that organic molecules in efOM had generally no or only very low electron-accepting capacity and were incorporated into the Fh aggregates when coprecipitated with Fh. Compared to OM-free Fh, adsorption of efOM to Fh decelerated the microbial Fe(III) reduction by passivating the Fh surface toward electron uptake. In contrast, coprecipitation of Fh with efOM accelerated the microbial reduction, likely because efOM disrupted the Fh structure, as noted by Mössbauer spectroscopy. Additionally, the adsorbed and coprecipitated efOM resulted in a more sustained Fe(III) reduction, potentially because efOM could have effectively scavenged biogenic Fe(II) and prevented the passivation of the Fh surface by the adsorbed Fe(II). Fe(III)-OM coprecipitates forming at anoxic-oxic interfaces are thus likely readily reducible by Fe(III)-reducing bacteria in redoximorphic soils.


Assuntos
Compostos Férricos , Solo , Geobacter , Ferro , Minerais , Oxirredução
4.
Sci Total Environ ; 797: 149153, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34311365

RESUMO

Engineered humic acid-coated goethite (HA-Goe) colloids find increasing application in in situ remediation of metal(loid)-polluted groundwater. Once introduced into the subsurface, the colloids interact with groundwater altering their physicochemical properties. In comparison to freshly synthesized, unreacted HA-Goe colloids, such alterations could reduce the adsorption affinity towards metal(loid)s and also result in altered ecotoxicological effects. In our study, HA-Goe colloids were exposed to two groundwaters (low vs. high concentrations of metal(loid)s) from two metal(loid)-contaminated sites for 87 days. We investigated (i) the course of HA-Goe ecotoxicity (Daphnia magna immobilization tests), (ii) HA-Goe adsorption properties (multi-element solutions containing As, Cu, Zn, Ni and Co), and (iii) changes in the chemical composition as well as in the mineral and aggregate properties of HA-Goe. The adsorption affinity of HA-Goe decreased in the order As ≈ Cu ≫ Zn > Ni ≈ Co. The metal(loid) adsorption occurred rapidly after mixing prior to the first sampling, while the duration of ongoing exposition to groundwater had no effect on the adsorption of these metal(loid)s. We neither observed a desorption of humic acids from the goethite surface nor alterations in the mineralogy, crystallinity, and surface properties of HA-Goe. Standardized Daphnia magna immobilization tests showed an increased number of mobile organisms with increasing exposure time of HA-Goe to both groundwaters. The decrease in HA-Goe-mediated immobilization of D. magna was strongest within the first 30 d. We attribute this to a shift to smaller sizes due to the breakdown of large HA-Goe aggregates, particularly within the first 30 d. The breakdown of these µm-sized aggregates may result mainly from the repeated shaking of the HA-Goe suspensions. Our study confirms within this particular setting that the tested HA-Goe colloids are suitable for the long-term immobilization of metal(loid)s, while lethal effects on D. magna were negligible.


Assuntos
Água Subterrânea , Substâncias Húmicas , Adsorção , Coloides , Substâncias Húmicas/análise , Compostos de Ferro , Minerais
5.
J Contam Hydrol ; 237: 103741, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33341658

RESUMO

Remediation of heavy metal-contaminated aquifers is a challenging process because they cannot be degraded by microorganisms. Together with the usually limited effectiveness of technologies applied today for treatment of heavy metal contaminated groundwater, this creates a need for new remediation technologies. We therefore developed a new treatment, in which permeable adsorption barriers are established in situ in aquifers by the injection of colloidal iron oxides. These adsorption barriers aim at the immobilization of heavy metals in aquifers groundwater, which was assessed in a large-scale field study in a brownfield site. Colloidal iron oxide (goethite) nanoparticles were used to install an in situ adsorption barrier in a very heterogeneous, contaminated aquifer of a brownfield in Asturias, Spain. The groundwater contained high concentrations of heavy metals with up to 25 mg/L zinc, 1.3 mg/L lead, 40 mg/L copper, 0.1 mg/L nickel and other minor heavy metal pollutants below 1 mg/L. High amounts of zinc (>900 mg/kg), lead (>2000 mg/kg), nickel (>190 mg/kg) were also present in the sediment. Ca. 1500 kg of goethite nanoparticles of 461 ± 266 nm diameter were injected at low pressure (< 0.6 bar) into the aquifer through nine screened injection wells. For each injection well, a radius of influence of at least 2.5 m was achieved within 8 h, creating an in situ barrier of 22 × 3 × 9 m. Despite the extremely high heavy metal contamination and the strong heterogeneity of the aquifer, successful immobilization of contaminants was observed in the tested area. The contaminant concentrations were strongly reduced immediately after the injection and the abatement of the heavy metals continued for a total post-injection monitoring period of 189 days. The iron oxide particles were found to adsorb heavy metals even at pH-values between 4 and 6, where low adsorption would have been expected. The study demonstrated the applicability of iron oxide nanoparticles for installing adsorption barriers for containment of heavy metals in contaminated groundwater under real conditions.


Assuntos
Recuperação e Remediação Ambiental , Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Adsorção , Nanopartículas Magnéticas de Óxido de Ferro , Espanha , Poluentes Químicos da Água/análise
6.
Reprod Toxicol ; 96: 95-101, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32505695

RESUMO

Doxorubicin (DOX) is one of the most commonly used drugs for the treatment of childhood cancers, including leukemia and lymphomas. Despite the high survival rate, female leukemia survivors are at higher risk of ovarian failure and infertility later in life. Treatment with chemotherapeutic drugs like DOX is associated with damage in ovarian follicles, but the affectation grade of granulosa cells remains unclear. To assess and avoid the possible side-effects of DOX, early biomarkers of ovarian injury and chemotherapy-induced ovarian toxicity should be identified. MicroRNAs (miRNAs) have emerged in recent years as a promising new class of biomarkers for drug-induced tissue toxicity. In this study, the effects of DOX on cell viability, steroidogenesis, and miRNA expression were studied in primary granulosa cells (GCs) and in two cellular models (COV434 and KGN cells). We report that compared to other chemotherapeutic drugs, DOX treatment is more detrimental to granulosa cells as observed by decrease of cell viability. Treatment with DOX changes the expression of the aromatase gene (CYP19A1) and the secretion of 17ß-estradiol (E2) in a cell-specific manner. miR-132-3p is dose-dependently increased by DOX in all cellular models. In absence of DOX, miR-132-3p overexpression in COV434 cells has no effect on E2 secretion or CYP19A1 expression. Altogether, these findings contribute to understanding the hormonal disbalance caused by DOX in human ovarian cells and suggest miR-132 as a putative sensor to predict DOX-induced ovarian toxicity.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Doxorrubicina/toxicidade , Células da Granulosa/efeitos dos fármacos , Aromatase/genética , Biomarcadores , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Estradiol/metabolismo , Feminino , Células da Granulosa/metabolismo , Humanos , MicroRNAs
7.
J Chromatogr A ; 1599: 203-214, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31047657

RESUMO

Colloidal iron(III) oxyhydroxides (FeOx) are important reactive adsorbents in nature. This study was set up to determine the size of environmentally relevant FeOx colloids with new methods, i.e. Flow Field Flow Fractionation (FlFFF-UV-ICP-MS) and single-particle ICP-MS/MS (sp-ICP-MS) and to compare these with standard approaches, i.e. dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), microscopy (TEM), membrane filtration, centrifugation and dialysis. Seven synthetic nano- and submicron FeOx with different mineralogy and coating were prepared and two soil solutions were included. The FlFFF was optimized for Fe recovery, yielding 70-90%. The FlFFF determines particle size with high resolution in a 1 mM NH4HCO3 (pH 8.3) background and can detect Fe-NOM complexes <5 nm and organo-mineral FeOx particles ranging 5-300 nm. The sp-ICP-MS method had a size detection limit for FeOx of about 32-47 nm. The distribution of hydrodynamic diameters of goethite particles detected with FlFFF, NTA and DLS were similar but the values were twice as large as the Fe cores of particles detected with sp-ICP-MS and TEM. Conventional fractionation by centrifugation and dialysis generally yielded similar fractions as FlFFF but membrane filtration overestimated the large size fractions. Particles formed from Fe(II) oxidation in the presence of NOM showed strikingly smaller organo-mineral Fe-Ox colloids as the NOM/Fe ratio increased. The soil solution obtained with centrifugation of an acid peat was dominated by small (<30 nm) Fe-OM complexes and organo-mineral FeOx colloids whereas that of a mineral pH neutral soil mainly contains larger (30-200 nm) Fe-rich particles. The FlFFF-UV-ICP-MS is recommended for environmental studies of colloidal FeOx since it has a wide size detection range, it fractionates in an environmentally relevant background (1 mM NH4HCO3) and it has acceptable element recoveries.


Assuntos
Técnicas de Química Analítica/métodos , Coloides/análise , Compostos Férricos/análise , Fracionamento por Campo e Fluxo , Minerais/análise , Espectrometria de Massas em Tandem , Técnicas de Química Analítica/normas , Coloides/química , Difusão Dinâmica da Luz , Compostos de Ferro/análise , Compostos de Ferro/química , Minerais/química , Nanopartículas/análise , Tamanho da Partícula , Solo/química , Análise Espectral
8.
Am J Reprod Immunol ; 80(2): e12994, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29938851

RESUMO

The proteomic analysis of complex body fluids by liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis requires the selection of suitable sample preparation techniques and optimal parameter settings in data analysis software packages to obtain reliable results. Proteomic analysis of follicular fluid, as a representative of a complex body fluid similar to serum or plasma, is difficult as it contains a vast amount of high abundant proteins and a variety of proteins with different concentrations. However, the accessibility of this complex body fluid for LC-MS/MS analysis is an opportunity to gain insights into the status, the composition of fertility-relevant proteins including immunological factors or for the discovery of new diagnostic and prognostic markers for, for example, the treatment of infertility. In this study, we compared different sample preparation methods (FASP, eFASP and in-solution digestion) and three different data analysis software packages (Proteome Discoverer with SEQUEST, Mascot and MaxQuant with Andromeda) combined with semi- and full-tryptic databank search options to obtain a maximum coverage of the follicular fluid proteome. We found that the most comprehensive proteome coverage is achieved by the eFASP sample preparation method using SDS in the initial denaturing step and the SEQUEST-based semi-tryptic data analysis. In conclusion, we have developed a fractionation-free methodical workflow for in depth LC-MS/MS-based analysis for the standardized investigation of human follicle fluid as an important representative of a complex body fluid. Taken together, we were able to identify a total of 1392 proteins in follicular fluid.


Assuntos
Líquido Folicular/química , Células da Granulosa/citologia , Proteoma/análise , Proteômica/métodos , Cromatografia Líquida , Feminino , Líquido Folicular/metabolismo , Humanos , Espectrometria de Massas em Tandem
9.
J Agric Food Chem ; 65(32): 6762-6770, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28731339

RESUMO

Colloidal forms of Fe(III) minerals can be stabilized in solution by coatings of organic or poly-phosphate (P), which reduce the zeta-potential. This opens up a route toward the development of nanoforms of P fertilizers. However, it is unclear if such P forms are bioavailable. To address this question, spinach (Spinacia oleracea) was grown in nutrient solutions, at equal total P, using three different forms of P (orthophosphate = Pi; hexametaphosphate = HMP; myo-inositol hexaphosphate = IHP), free or bound to goethite/ferrihydrite colloids. After 10 days, P uptake was determined with a dose-response curve using colloid-free Pi as a reference treatment. The Pi concentration generating equal P uptake as in colloidal P treatments was used to calculate the relative bioavailability of colloidal P (RBAcolloid). The RBAcolloid was about 60% for Pi-loaded goethite, stabilized with natural organic matter. For HMP/IHP-Pi-loaded colloids, RBAcolloid ranged between 10 and 50%, in line with their higher sorption strength. In conclusion, colloidal organic P or poly-P can stabilize Fe(III) colloids in solution and can contribute to plant-available P. Soil experiments are required to assess their potential as nanofertilizers.


Assuntos
Fertilizantes/análise , Organofosfatos/metabolismo , Polifosfatos/metabolismo , Spinacia oleracea/metabolismo , Disponibilidade Biológica , Transporte Biológico , Coloides/química , Coloides/metabolismo , Ferro/química , Ferro/metabolismo , Cinética , Organofosfatos/química , Polifosfatos/química , Spinacia oleracea/crescimento & desenvolvimento
10.
Environ Sci Technol ; 49(1): 544-52, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25438192

RESUMO

Colloidal iron oxides (FeOx) are increasingly released to the environment due to their use in environmental remediation and biomedical applications, potentially harming living organisms. Size and composition could affect the bioavailability and toxicity of such colloids. Therefore, we investigated the toxicity of selected FeOx with variable aggregate size and variably composed FeOx-associated organic matter (OM) toward the nematode Caenorhabditis elegans. Ferrihydrite colloids containing citrate were taken up by C. elegans with the food and accumulated inside their body. The toxicity of ferrihydrite, goethite, and akaganeite was dependent on aggregate size and specific surface area, with EC50 values for reproduction ranging from 4 to 29 mg Fe L(-1). Experiments with mutant strains lacking mitochondrial superoxide dismutase (sod-2) showed oxidative stress for two FeOx and Fe(3+)-ions, however, revealed that it was not the predominant mechanism of toxicity. The OM composition determined the toxicity of mixed OM-FeOx phases on C. elegans. FeOx associated with humic acids or citrate were less toxic than OM-free FeOx. In contrast, soil-derived ferrihydrite, containing proteins and polysaccharides from mobile OM, was even more toxic than OM-free Fh of similar aggregate size. Consequently, the careful choice of the type of FeOx and the type of associated OM may help in reducing the ecological risks if actively applied to the subsurface.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Coloides/toxicidade , Compostos Férricos/toxicidade , Tamanho da Partícula , Solo/química , Testes de Toxicidade , Animais , Meio Ambiente , Ferro/análise , Compostos de Ferro/toxicidade , Minerais/toxicidade , Poluentes do Solo/toxicidade
11.
Environ Pollut ; 159(5): 1398-405, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21310516

RESUMO

Arsenic mobility may increase in liquid phase due to association with colloidal Fe oxides. We studied the association of As with Fe oxide colloids in the effluent from water-saturated soil columns run under anoxic conditions. Upon exfiltration, the solutions, which contained Fe2+, were re-aerated and ferrihydrite colloids precipitated. The entire amount of effluent As was associated with the ferrihydrite colloids, although PO4(3-), SiO4(4-), CO3(2-) and dissolved organic matter were present in the effluent during ferrihydrite colloid formation. Furthermore, no subsequent release of As from the ferrihydrite colloids was observed despite the presence of these (in)organic species known to compete with As for adsorption on Fe oxides. Arsenic was bound via inner-sphere complexation on the ferrihydrite surface. FTIR spectroscopy also revealed adsorption of PO4(3-) and polymerized silica. However, these species could not impede the quantitative association of As with colloidal ferrihydrite in the soil effluents.


Assuntos
Arsênio/química , Compostos Férricos/química , Poluentes do Solo/química , Poluentes Químicos da Água/química , Ânions/química , Coloides , Compostos Orgânicos/química , Fosfatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...