Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36297384

RESUMO

The cyclic nucleotide phosphodiesterase 2A is an intracellular enzyme which hydrolyzes the secondary messengers cAMP and cGMP and therefore plays an important role in signaling cascades. A high expression in distinct brain areas as well as in cancer cells makes PDE2A an interesting therapeutic and diagnostic target for neurodegenerative and neuropsychiatric diseases as well as for cancer. Aiming at specific imaging of this enzyme in the brain with positron emission tomography (PET), a new triazolopyridopyrazine-based derivative (11) was identified as a potent PDE2A inhibitor (IC50, PDE2A = 1.99 nM; IC50, PDE10A ~2000 nM) and has been radiofluorinated for biological evaluation. In vitro autoradiographic studies revealed that [18F]11 binds with high affinity and excellent specificity towards PDE2A in the rat brain. For the PDE2A-rich region nucleus caudate and putamen an apparent KD value of 0.24 nM and an apparent Bmax value of 16 pmol/mg protein were estimated. In vivo PET-MR studies in rats showed a moderate brain uptake of [18F]11 with a highest standardized uptake value (SUV) of 0.97. However, no considerable enrichment in PDE2A-specific regions in comparison to a reference region was detectable (SUVcaudate putamen = 0.51 vs. SUVcerebellum = 0.40 at 15 min p.i.). Furthermore, metabolism studies revealed a considerable uptake of radiometabolites of [18F]11 in the brain (66% parent fraction at 30 min p.i.). Altogether, despite the low specificity and the blood−brain barrier crossing of radiometabolites observed in vivo, [18F]11 is a valuable imaging probe for the in vitro investigation of PDE2A in the brain and has potential as a lead compound for further development of a PDE2A-specific PET ligand for neuroimaging.

2.
Chempluschem ; 86(6): 827-835, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33656810

RESUMO

α-Aminoxy peptides represent an interesting group of peptidomimetics with high proteolytic stability and the ability to fold into specific, predictable secondary structures. Here, we present a series of hybrid peptides consisting of α-aminoxy acids and α-amino acids with cationic and aromatic, hydrophobic side chains in an alternating manner synthesized using an efficient protocol that combines solution- and solid-phase synthesis. 2D ROESY experiments with a representative hexamer suggested the presence of a 7/8 helical conformation in solution. Biological evaluation revealed a significant impact of the peptide chain length and the N-terminal cap on the antimicrobial and anticancer properties of this series of hybrid peptides. The Fmoc-capped peptide 6e displayed the most potent antimicrobial activity against a panel of Gram-negative and Gram-positive bacterial strains (e. g. against E. Coli: MIC=8 mg/L; S. aureus: MIC=4 mg/L).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...