Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(5)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33514540

RESUMO

Natural genetic variation affects circadian rhythms across the evolutionary tree, but the underlying molecular mechanisms are poorly understood. We investigated population-level, molecular circadian clock variation by generating >700 tissue-specific transcriptomes of Drosophila melanogaster (w1118 ) and 141 Drosophila Genetic Reference Panel (DGRP) lines. This comprehensive circadian gene expression atlas contains >1700 cycling genes including previously unknown central circadian clock components and tissue-specific regulators. Furthermore, >30% of DGRP lines exhibited aberrant circadian gene expression, revealing abundant genetic variation-mediated, intertissue circadian expression desynchrony. Genetic analysis of one line with the strongest deviating circadian expression uncovered a novel cry mutation that, as shown by protein structural modeling and brain immunohistochemistry, disrupts the light-driven flavin adenine dinucleotide cofactor photoreduction, providing in vivo support for the importance of this conserved photoentrainment mechanism. Together, our study revealed pervasive tissue-specific circadian expression variation with genetic variants acting upon tissue-specific regulatory networks to generate local gene expression oscillations.


Assuntos
Relógios Circadianos , Proteínas de Drosophila , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
2.
BMC Biol ; 18(1): 129, 2020 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-32950053

RESUMO

BACKGROUND: The evolution of embryological development has long been characterized by deep conservation. In animal development, the phylotypic stage in mid-embryogenesis is more conserved than either early or late stages among species within the same phylum. Hypotheses to explain this hourglass pattern have focused on purifying the selection of gene regulation. Here, we propose an alternative-genes are regulated in different ways at different stages and have different intrinsic capacities to respond to perturbations on gene expression. RESULTS: To eliminate the influence of natural selection, we quantified the expression variability of isogenetic single embryo transcriptomes throughout fly Drosophila melanogaster embryogenesis. We found that the expression variability is lower at the phylotypic stage, supporting that the underlying regulatory architecture in this stage is more robust to stochastic variation on gene expression. We present evidence that the phylotypic stage is also robust to genetic variations on gene expression. Moreover, chromatin regulation appears to play a key role in the variation and evolution of gene expression. CONCLUSIONS: We suggest that a phylum-level pattern of embryonic conservation can be explained by the intrinsic difference of gene regulatory mechanisms in different stages.


Assuntos
Evolução Biológica , Drosophila melanogaster/genética , Desenvolvimento Embrionário/genética , Transcriptoma , Animais , Drosophila melanogaster/embriologia , Embrião não Mamífero/embriologia
3.
Genome Biol ; 21(1): 6, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31948474

RESUMO

BACKGROUND: Resistance to enteric pathogens is a complex trait at the crossroads of multiple biological processes. We have previously shown in the Drosophila Genetic Reference Panel (DGRP) that resistance to infection is highly heritable, but our understanding of how the effects of genetic variants affect different molecular mechanisms to determine gut immunocompetence is still limited. RESULTS: To address this, we perform a systems genetics analysis of the gut transcriptomes from 38 DGRP lines that were orally infected with Pseudomonas entomophila. We identify a large number of condition-specific, expression quantitative trait loci (local-eQTLs) with infection-specific ones located in regions enriched for FOX transcription factor motifs. By assessing the allelic imbalance in the transcriptomes of 19 F1 hybrid lines from a large round robin design, we independently attribute a robust cis-regulatory effect to only 10% of these detected local-eQTLs. However, additional analyses indicate that many local-eQTLs may act in trans instead. Comparison of the transcriptomes of DGRP lines that were either susceptible or resistant to Pseudomonas entomophila infection reveals nutcracker as the only differentially expressed gene. Interestingly, we find that nutcracker is linked to infection-specific eQTLs that correlate with its expression level and to enteric infection susceptibility. Further regulatory analysis reveals one particular eQTL that significantly decreases the binding affinity for the repressor Broad, driving differential allele-specific nutcracker expression. CONCLUSIONS: Our collective findings point to a large number of infection-specific cis- and trans-acting eQTLs in the DGRP, including one common non-coding variant that lowers enteric infection susceptibility.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/microbiologia , Proteínas F-Box/genética , Alelos , Animais , Sítios de Ligação , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/imunologia , Drosophila melanogaster/metabolismo , Proteínas F-Box/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Polimorfismo de Nucleotídeo Único , Pseudomonas , Locos de Características Quantitativas , Elementos Reguladores de Transcrição , Transcriptoma
4.
Genome Biol ; 21(1): 4, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31948480

RESUMO

BACKGROUND: RNA splicing is a key post-transcriptional mechanism that generates protein diversity and contributes to the fine-tuning of gene expression, which may facilitate adaptation to environmental challenges. Here, we employ a systems approach to study alternative splicing changes upon enteric infection in females from classical Drosophila melanogaster strains as well as 38 inbred lines. RESULTS: We find that infection leads to extensive differences in isoform ratios, which results in a more diverse transcriptome with longer 5' untranslated regions (5'UTRs). We establish a role for genetic variation in mediating inter-individual splicing differences, with local splicing quantitative trait loci (local-sQTLs) being preferentially located at the 5' end of transcripts and directly upstream of splice donor sites. Moreover, local-sQTLs are more numerous in the infected state, indicating that acute stress unmasks a substantial number of silent genetic variants. We observe a general increase in intron retention concentrated at the 5' end of transcripts across multiple strains, whose prevalence scales with the degree of pathogen virulence. The length, GC content, and RNA polymerase II occupancy of these introns with increased retention suggest that they have exon-like characteristics. We further uncover that retained intron sequences are enriched for the Lark/RBM4 RNA binding motif. Interestingly, we find that lark is induced by infection in wild-type flies, its overexpression and knockdown alter survival, and tissue-specific overexpression mimics infection-induced intron retention. CONCLUSION: Our collective findings point to pervasive and consistent RNA splicing changes, partly mediated by Lark/RBM4, as being an important aspect of the gut response to infection.


Assuntos
Infecções Bacterianas/genética , Proteínas de Drosophila/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Regiões 5' não Traduzidas , Animais , Infecções Bacterianas/microbiologia , Composição de Bases , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Intestinos/microbiologia , Íntrons , Pseudomonas/patogenicidade , Locos de Características Quantitativas , Proteínas de Ligação a RNA/genética
5.
iScience ; 19: 436-447, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31422284

RESUMO

Eukaryotic genomes encode several buffering mechanisms that robustly maintain invariant phenotypic outcome despite fluctuating environmental conditions. Here we show that the Drosophila gut-associated commensals, represented by a single facultative symbiont, Lactobacillus plantarum (LpWJL), constitutes a so far unexpected buffer that masks the contribution of the host's cryptic genetic variation (CGV) to developmental traits while the host is under nutritional stress. During chronic under-nutrition, LpWJL consistently reduces variation in different host phenotypic traits and ensures robust organ patterning during development; LpWJL also decreases genotype-dependent expression variation, particularly for development-associated genes. We further provide evidence that LpWJL buffers via reactive oxygen species (ROS) signaling whose inhibition impairs microbiota-mediated phenotypic robustness. We thus identified a hitherto unappreciated contribution of the gut facultative symbionts to host fitness that, beyond supporting growth rates and maturation timing, confers developmental robustness and phenotypic homogeneity in times of nutritional stress.

6.
PLoS Genet ; 15(7): e1008269, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31299050

RESUMO

Development of eye tissue is initiated by a conserved set of transcription factors termed retinal determination network (RDN). In the fruit fly Drosophila melanogaster, the zinc-finger transcription factor Glass acts directly downstream of the RDN to control identity of photoreceptor as well as non-photoreceptor cells. Tight control of spatial and temporal gene expression is a critical feature during development, cell-fate determination as well as maintenance of differentiated tissues. The molecular mechanisms that control expression of glass, however, remain largely unknown. We here identify complex regulatory mechanisms controlling expression of the glass locus. All information to recapitulate glass expression are contained in a compact 5.2 kb cis-acting genomic element by combining different cell-type specific and general enhancers with repressor elements. Moreover, the immature RNA of the locus contains an alternative small open reading frame (smORF) upstream of the actual glass translation start, resulting in a small peptide instead of the three possible Glass protein isoforms. CRISPR/Cas9-based mutagenesis shows that the smORF is not required for the formation of functioning photoreceptors, but is able to attenuate effects of glass misexpression. Furthermore, editing the genome to generate glass loci eliminating either one or two isoforms shows that only one of the three proteins is critical for formation of functioning photoreceptors, while removing the two other isoforms did not cause defects in developmental or photoreceptor function. Our results show that eye development and function is largely unaffected by targeted manipulations of critical features of the glass transcript, suggesting a strong selection pressure to allow the formation of a functioning eye.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Olho/crescimento & desenvolvimento , Processamento Alternativo , Animais , Diferenciação Celular , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Elementos Facilitadores Genéticos , Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mutagênese Sítio-Dirigida , Células Fotorreceptoras/metabolismo
7.
Curr Protoc Neurosci ; 77: 8.37.1-8.37.21, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27696358

RESUMO

Phenotyping strategies in simple model organisms such as D. melanogaster and C. elegans are often broadly limited to growth, aging, and fitness. Recently, a number of physical setups and video tracking software suites have been developed to allow for accurate, quantitative, and high-throughput analysis of movement in flies and worms. However, many of these systems require precise experimental setups and/or fixed recording formats. We report here an update to the Parallel Worm Tracker software, which we termed the Movement Tracker. The Movement Tracker allows variable experimental setups to provide cross-platform automated processing of a variety of movement characteristics in both worms and flies and permits the use of simple physical setups that can be readily implemented in any laboratory. This software allows high-throughput processing capabilities and high levels of flexibility in video analysis, providing quantitative movement data on C. elegans and D. melanogaster in a variety of different conditions. © 2016 by John Wiley & Sons, Inc.


Assuntos
Comportamento Animal/fisiologia , Software , Animais , Caenorhabditis elegans/metabolismo , Drosophila melanogaster/metabolismo , Locomoção/fisiologia , Modelos Animais , Estatística como Assunto/instrumentação
8.
Cell Rep ; 10(10): 1681-1691, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25772356

RESUMO

In recent years, tetracyclines, such as doxycycline, have become broadly used to control gene expression by virtue of the Tet-on/Tet-off systems. However, the wide range of direct effects of tetracycline use has not been fully appreciated. We show here that these antibiotics induce a mitonuclear protein imbalance through their effects on mitochondrial translation, an effect that likely reflects the evolutionary relationship between mitochondria and proteobacteria. Even at low concentrations, tetracyclines induce mitochondrial proteotoxic stress, leading to changes in nuclear gene expression and altered mitochondrial dynamics and function in commonly used cell types, as well as worms, flies, mice, and plants. Given that tetracyclines are so widely applied in research, scientists should be aware of their potentially confounding effects on experimental results. Furthermore, these results caution against extensive use of tetracyclines in livestock due to potential downstream impacts on the environment and human health.

9.
PLoS Genet ; 10(9): e1004673, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25255223

RESUMO

The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some of these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. Here we phenotype 43 BXD strains and observe they have large variation (-5-fold) in their spontaneous activity during waking hours. QTL analyses indicate that -40% of this variance is attributable to a narrow locus containing the aryl hydrocarbon receptor (Ahr), a basic helix-loop-helix transcription factor with well-established roles in development and xenobiotic metabolism. Strains with the D2 allele of Ahr have reduced gene expression compared to those with the B6 allele, and have significantly higher spontaneous activity. This effect was also observed in B6 mice with a congenic D2 Ahr interval, and in B6 mice with a humanized AHR allele which, like the D2 allele, is expressed much less and has less enzymatic activity than the B6 allele. Ahr is highly conserved in invertebrates, and strikingly inhibition of its orthologs in D. melanogaster and C. elegans (spineless and ahr-1) leads to marked increases in basal activity. In mammals, Ahr has numerous ligands, but most are either non-selective (e.g. resveratrol) or highly toxic (e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)). Thus, we chose to examine a major environmental influence--long term feeding with high fat diet (HFD)--to see if the effects of Ahr are dependent on major metabolic differences. Interestingly, while HFD robustly halved movement across all strains, the QTL position and effects of Ahr remained unchanged, indicating that the effects are independent. The highly consistent effects of Ahr on movement indicate that changes in its constitutive activity have a role on spontaneous movement and may influence human behavior.


Assuntos
Atividade Motora/genética , Receptores de Hidrocarboneto Arílico/genética , Sequência de Aminoácidos , Animais , Sequência Conservada , Evolução Molecular , Feminino , Estudos de Associação Genética , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Fenótipo , Filogenia , Locos de Características Quantitativas , Característica Quantitativa Herdável , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...