Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 14(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38792561

RESUMO

Remembering objects and their associated location (object-location memory; OLM), is a fundamental cognitive function, mediated by cortical and subcortical brain regions. Previously, the combination of OLM training and transcranial direct current stimulation (tDCS) suggested beneficial effects, but the evidence remains heterogeneous. Here, we applied focal tDCS over the right temporoparietal cortex in 52 participants during a two-day OLM training, with anodal tDCS (2 mA, 20 min) or sham (40 s) on the first day. The focal stimulation did not enhance OLM performance on either training day (stimulation effect: -0.09, 95%CI: [-0.19; 0.02], p = 0.08). Higher electric field magnitudes in the target region were not associated with individual performance benefits. Participants with content-related learning strategies showed slightly superior performance compared to participants with position-related strategies. Additionally, training gains were associated with individual verbal learning skills. Consequently, the lack of behavioral benefits through focal tDCS might be due to the involvement of different cognitive processes and brain regions, reflected by participant's learning strategies. Future studies should evaluate whether other brain regions or memory-relevant networks may be involved in the modulation of object-location associations, investigating other target regions, and further exploring individualized stimulation parameters.

2.
Alzheimers Res Ther ; 16(1): 6, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212815

RESUMO

BACKGROUND: Repeated sessions of training and non-invasive brain stimulation have the potential to enhance cognition in patients with cognitive impairment. We hypothesized that combining cognitive training with anodal transcranial direct current stimulation (tDCS) will lead to performance improvement in the trained task and yield transfer to non-trained tasks. METHODS: In our randomized, sham-controlled, double-blind study, 46 patients with cognitive impairment (60-80 years) were randomly assigned to one of two interventional groups. We administered a 9-session cognitive training (consisting of a letter updating and a Markov decision-making task) over 3 weeks with concurrent 1-mA anodal tDCS over the left dorsolateral prefrontal cortex (20 min in tDCS, 30 s in sham group). Primary outcome was trained task performance (letter updating task) immediately after training. Secondary outcomes included performance in tasks testing working memory (N-back task), decision-making (Wiener Matrices test) and verbal memory (verbal learning and memory test), and resting-state functional connectivity (FC). Tasks were administered at baseline, at post-assessment, and at 1- and 7-month follow-ups (FU). MRI was conducted at baseline and 7-month FU. Thirty-nine participants (85%) successfully completed the intervention. Data analyses are reported on the intention-to-treat (ITT) and the per-protocol (PP) sample. RESULTS: For the primary outcome, no difference was observed in the ITT (ß = 0.1, 95%-CI [- 1.2, 1.3, p = 0.93] or PP sample (ß = - 0.2, 95%-CI [- 1.6, 1.2], p = 0.77). However, secondary analyses in the N-back working memory task showed that, only in the PP sample, the tDCS outperformed the sham group (PP: % correct, ß = 5.0, 95%-CI [- 0.1, 10.2], p = 0.06, d-prime ß = 0.2, 95%-CI [0.0, 0.4], p = 0.02; ITT: % correct, ß = 3.0, 95%-CI [- 3.9, 9.9], p = 0.39, d-prime ß = 0.1, 95%-CI [- 0.1, 0.3], p = 0.5). Frontoparietal network FC was increased from baseline to 7-month FU in the tDCS compared to the sham group (pFDR < 0.05). Exploratory analyses showed a correlation between individual memory improvements and higher electric field magnitudes induced by tDCS (ρtDCS = 0.59, p = 0.02). Adverse events did not differ between groups, questionnaires indicated successful blinding (incidence rate ratio, 1.1, 95%-CI [0.5, 2.2]). CONCLUSIONS: In sum, cognitive training with concurrent brain stimulation, compared to cognitive training with sham stimulation, did not lead to superior performance enhancements in patients with cognitive impairment. However, we observed transferred working memory benefits in patients who underwent the full 3-week intervention. MRI data pointed toward a potential intervention-induced modulation of neural network dynamics. A link between individual performance gains and electric fields suggested dosage-dependent effects of brain stimulation. Together, our findings do not support the immediate benefit of the combined intervention on the trained function, but provide exploratory evidence for transfer effects on working memory in patients with cognitive impairment. Future research needs to explore whether individualized protocols for both training and stimulation parameters might further enhance treatment gains. TRIAL REGISTRATION: The study is registered on ClinicalTrials.gov (NCT04265378). Registered on 7 February 2020. Retrospectively registered.


Assuntos
Disfunção Cognitiva , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Treino Cognitivo , Memória de Curto Prazo/fisiologia , Disfunção Cognitiva/terapia , Método Duplo-Cego , Encéfalo , Córtex Pré-Frontal
3.
Nat Commun ; 14(1): 3184, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268628

RESUMO

The combination of repeated behavioral training with transcranial direct current stimulation (tDCS) holds promise to exert beneficial effects on brain function beyond the trained task. However, little is known about the underlying mechanisms. We performed a monocenter, single-blind randomized, placebo-controlled trial comparing cognitive training to concurrent anodal tDCS (target intervention) with cognitive training to concurrent sham tDCS (control intervention), registered at ClinicalTrial.gov (Identifier NCT03838211). The primary outcome (performance in trained task) and secondary behavioral outcomes (performance on transfer tasks) were reported elsewhere. Here, underlying mechanisms were addressed by pre-specified analyses of multimodal magnetic resonance imaging before and after a three-week executive function training with prefrontal anodal tDCS in 48 older adults. Results demonstrate that training combined with active tDCS modulated prefrontal white matter microstructure which predicted individual transfer task performance gain. Training-plus-tDCS also resulted in microstructural grey matter alterations at the stimulation site, and increased prefrontal functional connectivity. We provide insight into the mechanisms underlying neuromodulatory interventions, suggesting tDCS-induced changes in fiber organization and myelin formation, glia-related and synaptic processes in the target region, and synchronization within targeted functional networks. These findings advance the mechanistic understanding of neural tDCS effects, thereby contributing to more targeted neural network modulation in future experimental and translation tDCS applications.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Idoso , Estimulação Transcraniana por Corrente Contínua/métodos , Treino Cognitivo , Método Simples-Cego , Técnicas Estereotáxicas , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Método Duplo-Cego
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...