Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 80(23): 8908-19, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19551926

RESUMO

Soils, sediments, freshwaters, and marine waters contain natural organic matter (NOM), an exceedingly complex mixture of organic compounds that collectively exhibit a nearly continuous range of properties (size-reactivity continuum). NOM is composed mainly of carbon, hydrogen, and oxygen, with minor contributions from heteroatoms such as nitrogen, sulfur, and phosphorus. Suwannee River fulvic acid (SuwFA) is a fraction of NOM that is relatively depleted in heteroatoms. Ultrahigh resolution Fourier transform ion cyclotron (FTICR) mass spectra of SuwFA reveal several thousand molecular formulas, corresponding in turn to several hundred thousand distinct chemical environments of carbon even without accountancy of isomers. The mass difference deltam among adjoining C,H,O-molecules between and within clusters of nominal mass is inversely related to molecular dissimilarity: any decrease of deltam imposes an ever growing mandatory difference in molecular composition. Molecular formulas that are expected for likely biochemical precursor molecules are notably absent from these spectra, indicating that SuwFA is the product of diagenetic reactions that have altered the major components of biomass beyond the point of recognition. The degree of complexity of SuwFA can be brought into sharp focus through comparison with the theoretical limits of chemical complexity, as constrained and quantized by the fundamentals of chemical binding. The theoretical C,H,O-compositional space denotes the isomer-filtered complement of the entire, very vast space of molecular structures composed solely of carbon, hydrogen, and oxygen. The molecular formulas within SuwFA occupy a sizable proportion of the theoretical C,H,O-compositional space. A 100 percent coverage of the theoretically feasible C,H,O-compositional space by SuwFA molecules is attained throughout a sizable range of mass and H/C and O/C elemental ratios. The substantial differences between (and complementarity of) the SuwFA molecular formulas that are observed using six different modes of ionization (APCI, APPI, and ESI in positive and negative modus) imply considerable selectivity of the ionization process and suggest that the observed mass spectra represent simplified projections of still more complex mixtures.


Assuntos
Benzopiranos/análise , Espectrometria de Massas/métodos , Rios/química , Benzopiranos/química , Análise de Fourier , Espectrometria de Massas/instrumentação , Estrutura Molecular
2.
J Agric Food Chem ; 55(24): 9936-43, 2007 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-17960882

RESUMO

Direct degradation of imazapic, an herbicide of the imidazoline family, has been investigated in aqueous solution at different concentrations, pH values, and temperatures. The efficiency of the photodegradation process has been evaluated through degradation rate constants that could be fitted best with pseudo-first-order kinetics ( Ct = C0 e(- kt )). Ultrahigh resolution mass spectrometry (FTICR/MS) was used in electrospray ionization mode as a tool to study the photolysis process on a molecular level, whereas UV-vis and high-performance liquid chromatography/mass spectrometry analysis were used to follow, by time, the evolution of the intermediates. Taking advantage of the high resolving power of FTICR/MS to perform precise formula assignments taking account of the natural abundance of isotopes, we herein propose and demonstrate an approach using 2D-derived van Krevelen visualization (O/C, H/C, m/z) to confirm the formation of imazapic intermediates. Such an approach allows a qualitative analysis of intermediates and elucidates the plausible reaction pathways of the photolysis process. More than eight photoproducts were separated and identified as a phototransformation of the imidazole ring. A mechanistical pathway was proposed.


Assuntos
Herbicidas/química , Imidazóis/química , Espectrometria de Massas/métodos , Ácidos Nicotínicos/química , Fotólise , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Análise de Fourier , Herbicidas/análise , Concentração de Íons de Hidrogênio , Imidazóis/análise , Cinética , Ácidos Nicotínicos/análise , Solubilidade , Espectrofotometria Ultravioleta , Temperatura
3.
Anal Bioanal Chem ; 389(5): 1311-27, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17924102

RESUMO

This perspective article provides an assessment of the state-of-the-art in the molecular-resolution analysis of complex organic materials. These materials can be divided into biomolecules in complex mixtures (which are amenable to successful separation into unambiguously defined molecular fractions) and complex nonrepetitive materials (which cannot be purified in the conventional sense because they are even more intricate). Molecular-level analyses of these complex systems critically depend on the integrated use of high-performance separation, high-resolution organic structural spectroscopy and mathematical data treatment. At present, only high-precision frequency-derived data exhibit sufficient resolution to overcome the otherwise common and detrimental effects of intrinsic averaging, which deteriorate spectral resolution to the degree of bulk-level rather than molecular-resolution analysis. High-precision frequency measurements are integral to the two most influential organic structural spectroscopic methods for the investigation of complex materials-NMR spectroscopy (which provides unsurpassed detail on close-range molecular order) and FTICR mass spectrometry (which provides unrivalled resolution)-and they can be translated into isotope-specific molecular-resolution data of unprecedented significance and richness. The quality of this standalone de novo molecular-level resolution data is of unparalleled mechanistic relevance and is sufficient to fundamentally advance our understanding of the structures and functions of complex biomolecular mixtures and nonrepetitive complex materials, such as natural organic matter (NOM), aerosols, and soil, plant and microbial extracts, all of which are currently poorly amenable to meaningful target analysis. The discrete analytical volumetric pixel space that is presently available to describe complex systems (defined by NMR, FT mass spectrometry and separation technologies) is in the range of 10(8-14) voxels, and is therefore capable of providing the necessary detail for a meaningful molecular-level analysis of very complex mixtures. Nonrepetitive complex materials exhibit mass spectral signatures in which the signal intensity often follows the number of chemically feasible isomers. This suggests that even the most strongly resolved FTICR mass spectra of complex materials represent simplified (e.g. isomer-filtered) projections of structural space.


Assuntos
Misturas Complexas/análise , Compostos Orgânicos/análise , Misturas Complexas/química , Estrutura Molecular , Compostos Orgânicos/química , Compostos Orgânicos/isolamento & purificação , Análise Espectral
4.
Anal Bioanal Chem ; 389(5): 1459-67, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17554530

RESUMO

The photodecomposition of imazamox, a herbicide of the imidazolinone family, was investigated in pure water. The main photoproducts from the photolysis were followed over time by liquid chromatography mass spectrometry and structures were proposed from exact mass determinations obtained by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. The method comprised exact mass determination with better than 0.2 ppm mass accuracy and a corresponding structural visualization taking care of respective isotopes with an adapted van Krevelen diagram that enabled a systematic approach to the characterisation of the elementary composition of each photoproduct. By taking advantage of the high resolving power of FT-ICR MS to make precise formula assignments, the derived 2D van Krevelen diagram (O/C; H/C; m/z) enabled one to structurally differentiate the formed photoproducts and to propose a degradation pathway for imazamox.


Assuntos
Imidazóis/química , Fotólise , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida de Alta Pressão , Ciclotrons , Análise de Fourier , Herbicidas/química
5.
Rapid Commun Mass Spectrom ; 18(12): 1341-4, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15174189

RESUMO

A rapid, simple and selective method involving direct separation by gas chromatography (GC) with electron ionization mass spectrometry (EI-MS) was employed to determine some N-acylhomoserine lactones (AHLs). Using GC/EI-MS, simultaneous separation and characterization of AHLs were possible without prior derivatization. Informative fragmentation patterns were obtained to identify the structures of N-acyl chains of AHLs. Electron ionization resulted in a common fragmentation pattern with the most abundant ion at m/z 143 and other minor peaks at m/z 71, 57, and 43. The presence of AHLs in extracts of Burkholderia cepacia strains was achieved in selected ion monitoring mode by using the prominent fragment at m/z 143.


Assuntos
4-Butirolactona/análogos & derivados , 4-Butirolactona/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Homosserina/análise , 4-Butirolactona/química , Acilação , Burkholderia cepacia/química , Homosserina/química
6.
Fresenius J Anal Chem ; 371(1): 25-34, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11605753

RESUMO

Selected agrochemicals (s-triazines and phenoxy acids) have been investigated with partial-filling micellar electrokinetic chromatography (PFMEKC) and non-aqueous capillary electrophoresis (NACE). Because these two techniques are compatible for coupling of capillary electrophoresis with mass spectrometry, different conditions affecting the separation efficiency (reproducibility, method linearity) were systematically tested, and the results were compared with those from classical MEKC. The conditions tested included buffer molarity, pH, the concentrations of the organic modifier and surfactant, the applied voltage, the injection time of the sample, and the length of the partial-filling plug. The respective limits of detection (LOD) using UV-detection were determined. Reduction of the electrophoretic raw data using the mobility scale transformation (micro-scale) improved qualitative comparison of the electropherograms and the reproducibility of quantitative data (integrated peak area) thus extending this data treatment from CZE to other endoosmotic flow-driven CE-techniques such as PFMEKC and NACE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...