Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6088, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480867

RESUMO

Establishing microbiome signatures is now recognized as a critical step toward identifying genetic and environmental factors shaping animal-associated microbiomes and informing the health status of a given host. In the present work, we prospectively collected 63 blood samples of the Atlantic cod population of the Southern Gulf of Saint Lawrence (GSL) and characterized their 16S rRNA circulating microbiome signature. Our results revealed that the blood microbiome signature was dominated at the phylum level by Proteobacteria, Bacteroidetes, Acidobacteria and Actinobacteria, a typical signature for fish populations inhabiting the GSL and other marine ecosystems. At the genus level, however, we identified two distinct cod groups. While the microbiome signature of the first group was dominated by Pseudoalteromonas, a genus we previously found in the microbiome signature of Greenland and Atlantic halibut populations of the GSL, the second group had a microbiome signature dominated by Nitrobacter and Sediminibacterium (approximately 75% of the circulating microbiome). Cods harboring a Nitrobacter/Sediminibacterium-rich microbiome signature were localized in the most southern part of the GSL, just along the northern coast of Cape Breton Island. Atlantic cod microbiome signatures did not correlate with the weight, length, relative condition, depth, temperature, sex, and salinity, as previously observed in the halibut populations. Our study provides, for the first time, a unique snapshot of the circulating microbiome signature of Atlantic cod populations and the potential existence of dysbiotic signatures associated with the geographical distribution of the population, probably linked with the presence of nitrite in the environment.


Assuntos
Gadiformes , Gadus morhua , Microbiota , Animais , Gadus morhua/genética , RNA Ribossômico 16S/genética , Microbiota/genética , Bactérias/genética , Gadiformes/genética
2.
Sci Rep ; 13(1): 5971, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045892

RESUMO

Establishing long-term microbiome-based monitoring programs is critical for managing and conserving wild fish populations in response to climate change. In most cases, these studies have been conducted on gut and, to a lesser extent, skin (mucus) microbiomes. Here, we exploited the concept of liquid biopsy to study the circulating bacterial microbiome of two Northern halibut species of economic and ecological importance. Amplification and sequencing of the 16S rRNA gene were achieved using a single drop of blood fixed on FTA cards to identify the core blood microbiome of Atlantic and Greenland halibut populations inhabiting the Gulf of St. Lawrence, Canada. We provide evidence that the circulating microbiome DNA (cmDNA) is driven by genetic and environmental factors. More specifically, we found that the circulating microbiome signatures are species-specific and vary according to sex, size, temperature, condition factor, and geographical localization. Overall, our study provides a novel approach for detecting dysbiosis signatures and the risk of disease in wild fish populations for fisheries management, most notably in the context of climate change.


Assuntos
Linguado , Microbiota , Animais , Linguado/genética , RNA Ribossômico 16S/genética , Groenlândia , Microbiota/genética , Pesqueiros , Peixes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...