Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 15277, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315998

RESUMO

Climate change in the Arctic is leading to earlier summers, creating a phenological mismatch between the hatching of insectivorous birds and the availability of their invertebrate prey. While phenological mismatch would presumably lower the survival of chicks, climate change is also leading to longer, warmer summers that may increase the annual productivity of birds by allowing adults to lay nests over a longer period of time, replace more nests that fail, and provide physiological relief to chicks (i.e., warmer temperatures that reduce thermoregulatory costs). However, there is little information on how these competing ecological processes will ultimately impact the demography of bird populations. In 2008 and 2009, we investigated the survival of chicks from initial and experimentally-induced replacement nests of arcticola Dunlin (Calidris alpina) breeding near Utqiagvik, Alaska. We monitored survival of 66 broods from 41 initial and 25 replacement nests. Based on the average hatch date of each group, chick survival (up to age 15 days) from replacement nests (Si = 0.10; 95% CI = 0.02-0.22) was substantially lower than initial nests (Si = 0.67; 95% CI = 0.48-0.81). Daily survival rates were greater for older chicks, chicks from earlier-laid clutches, and during periods of greater invertebrate availability. As temperature was less important to daily survival rates of shorebird chicks than invertebrate availability, our results indicate that any physiological relief experienced by chicks will likely be overshadowed by the need for adequate food. Furthermore, the processes creating a phenological mismatch between hatching of shorebird young and invertebrate emergence ensures that warmer, longer breeding seasons will not translate into abundant food throughout the longer summers. Thus, despite having a greater opportunity to nest later (and potentially replace nests), young from these late-hatching broods will likely not have sufficient food to survive. Collectively, these results indicate that warmer, longer summers in the Arctic are unlikely to increase annual recruitment rates, and thus unable to compensate for low adult survival, which is typically limited by factors away from the Arctic-breeding grounds.


Assuntos
Aves/fisiologia , Comportamento de Nidação , Estações do Ano , Animais , Regiões Árticas , Biomassa , Ecossistema , Modelos Biológicos
2.
PLoS One ; 16(7): e0253895, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34197512

RESUMO

Assessing species status and making classification decisions under the Endangered Species Act is a critical step towards effective species conservation. However, classification decisions are liable to two errors: i) failing to classify a species as threatened or endangered that should be classified (underprotection), or ii) classifying a species as threatened or endangered when it is not warranted (overprotection). Recent surveys indicate threatened spectacled eider populations are increasing in western Alaska, prompting the U.S. Fish and Wildlife Service to reconsider the federal listing status. There are multiple criteria set for assessing spectacled eider status, and here we focus on the abundance and decision analysis criteria. We estimated population metrics using state-space models for Alaskan breeding populations of spectacled eiders. We projected abundance over 50 years using posterior estimates of abundance and process variation to estimate the probability of quasi-extinction. The decision analysis maps the risk of quasi-extinction to the loss associated with making a misclassification error (i.e., underprotection) through a loss function. Our results indicate that the Yukon Kuskokwim Delta breeding population in western Alaska has met the recovery criteria but the Arctic Coastal Plain population in northern Alaska has not. The methods employed here provide an example of accounting for uncertainty and incorporating value judgements in such a way that the decision-makers may understand the risk of committing a misclassification error. Incorporating the abundance threshold and decision analysis in the reclassification criteria greatly increases the transparency and defensibility of the classification decision, a critical aspect for making effective decisions about species management and conservation.


Assuntos
Tomada de Decisões Gerenciais , Técnicas de Apoio para a Decisão , Patos , Espécies em Perigo de Extinção/legislação & jurisprudência , Alaska , Animais , Teorema de Bayes , Monitorização de Parâmetros Ecológicos/estatística & dados numéricos , Espécies em Perigo de Extinção/estatística & dados numéricos , Estados Unidos , Yukon
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...