Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 201(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30322855

RESUMO

The F plasmid tra operon encodes most of the proteins required for bacterial conjugation. TraJ and ArcA are known activators of the tra operon promoter PY, which is subject to H-NS-mediated silencing. Donor ability and promoter activity assays indicated that PY is inactivated by silencers and requires both TraJ and ArcA for activation to support efficient F conjugation. The observed low-level, ArcA-independent F conjugation is caused by tra expression from upstream alternative promoters. Electrophoretic mobility shift assays showed that TraJ alone weakly binds to PY regulatory DNA; however, TraJ binding is significantly enhanced by ArcA binding to the same DNA, indicating cooperativity of the two proteins. Analysis of binding affinities between ArcA and various DNA fragments in the PY regulatory region defined a 22-bp tandem repeat sequence (from -76 to -55 of PY) sufficient for optimal ArcA binding, which is immediately upstream of the predicted TraJ-binding site (from -54 to -34). Deletion analysis of the PY promoter in strains deficient in TraJ, ArcA, and/or H-NS determined that sequences upstream of -103 are required by silencers including H-NS for PY silencing, whereas sequences downstream of -77 are targeted by TraJ and ArcA for activation. TraJ and ArcA appear not only to counteract PY silencers but also to directly activate PY in a cooperative manner. Our data reveal the cooperativity of TraJ and ArcA during PY activation and provide insights into the regulatory circuit controlling F-family plasmid-mediated bacterial conjugation.IMPORTANCE Conjugation is a major mechanism for dissemination of antibiotic resistance and virulence among bacterial populations. The tra operon in the F family of conjugative plasmids encodes most of the proteins involved in bacterial conjugation. This work reveals that activation of tra operon transcription requires two proteins, TraJ and ArcA, to bind cooperatively to adjacent sites immediately upstream of the major tra promoter PY The interaction of TraJ and ArcA with the tra operon not only relieves PY from silencers but also directly activates it. These findings provide insights into the regulatory circuit of the F-family plasmid-mediated bacterial conjugation.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Conjugação Genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Fator F , Regulação Bacteriana da Expressão Gênica , Óperon , Proteínas Repressoras/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , DNA Bacteriano/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Deleção de Genes , Regiões Promotoras Genéticas , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Repressoras/genética
2.
Plasmid ; 91: 61-67, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28365184

RESUMO

Good annotation of plasmid genomes is essential to maximise the value of the rapidly increasing volume of plasmid sequences. This short review highlights some of the current issues and suggests some ways forward. Where a well-studied related plasmid system exists we recommend that new annotation adheres to the convention already established for that system, so long as it is based on sound principles and solid experimental evidence, even if some of the new genes are more similar to homologues in different systems. Where a well-established model does not exist we provide generic gene names that reflect likely biochemical activity rather than overall purpose particularly, for example, where genes clearly belong to a type IV secretion system but it is not known whether they function in conjugative transfer or virulence. We also recommend that annotators use a whole system naming approach to avoid ending up with an illogical mixture of names from other systems based on the highest scoring match from a BLAST search. In addition, where function has not been experimentally established we recommend using just the locus tag, rather than a function-related gene name, while recording possible functions as notes rather than in a provisional name.


Assuntos
Conjugação Genética , DNA Bacteriano/genética , Anotação de Sequência Molecular/métodos , Plasmídeos/química , Plasmídeos/classificação , Mapeamento Cromossômico , Replicação do DNA , Elementos de DNA Transponíveis , DNA Bacteriano/metabolismo , Resistência Microbiana a Medicamentos/genética , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/metabolismo , Plasmídeos/metabolismo , Análise de Sequência de DNA , Terminologia como Assunto
3.
Plasmid ; 78: 79-87, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25102058

RESUMO

Antisense RNAs have long been known to regulate diverse aspects of plasmid biology. Here we review the FinOP system that modulates F plasmid gene expression through regulation of the F plasmid transcription factor, TraJ. FinOP is a two component system composed of an antisense RNA, FinP, which represses TraJ translation, and a protein, FinO, which is required to stabilize FinP and facilitate its interactions with its traJ mRNA target. We review the evidence that FinO acts as an RNA chaperone to bind and destabilize internal stem-loop structures within the individual RNAs that would otherwise block intermolecular RNA duplexing. Recent structural studies have provided mechanistic insights into how FinO may facilitate interactions between FinP and traJ mRNA. We also review recent findings that two other proteins, Escherichia coli ProQ and Neisseria meningitidis NMB1681, may represent FinO-like RNA chaperones.


Assuntos
Proteínas de Escherichia coli/metabolismo , Fator F/genética , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Regulação da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Conformação de Ácido Nucleico , RNA Antissenso , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética
4.
Mol Neurobiol ; 52(3): 1135-1151, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25301234

RESUMO

A main requisite in the phagocytosis of ingested material is a coordinated series of maturation steps which lead to the degradation of ingested cargo. Photoreceptor outer segment (POS) renewal involves phagocytosis of the distal disk membranes by the retinal pigment epithelium (RPE). Previously, we identified melanoregulin (MREG) as an intracellular cargo-sorting protein required for the degradation of POS disks. Here, we provide evidence that MREG-dependent processing links both autophagic and phagocytic processes in LC3-associated phagocytosis (LAP). Ingested POS phagosomes are associated with endogenous LC3 and MREG. The LC3 association with POSs exhibited properties of LAP; it was independent of rapamycin pretreatment, but dependent on Atg5. Loss of MREG resulted in a decrease in the extent of LC3-POS association. Studies using DQ-BSA suggest that loss of MREG does not compromise the association and fusion of LC3-positive phagosomes with lysosomes. Furthermore, the mechanism of MREG action is likely through a protein complex that includes LC3, as determined by colocalization and immunoprecipitation in both RPE cells and macrophages. We posit that MREG participates in coordinating the association of phagosomes with LC3 for content degradation with the loss of MREG leading to phagosome accumulation.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas do Olho/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Fagocitose , Fagossomos/metabolismo , Epitélio Pigmentado da Retina/fisiologia , Proteínas Adaptadoras de Transporte Vesicular , Animais , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Proteína 5 Relacionada à Autofagia , Proteínas de Transporte/genética , Bovinos , Ritmo Circadiano , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Complexos Multiproteicos , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Transporte Proteico , Proteólise , Segmento Externo das Células Fotorreceptoras da Retina/fisiologia , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/embriologia , Sirolimo/farmacologia
5.
J Mol Biol ; 426(22): 3783-3795, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25284757

RESUMO

The conjugative transfer of bacterial F plasmids relies on TraM, a plasmid-encoded protein that recognizes multiple DNA sites to recruit the plasmid to the conjugative pore. In spite of the high degree of amino acid sequence conservation between TraM proteins, many of these proteins have markedly different DNA binding specificities that ensure the selective recruitment of a plasmid to its cognate pore. Here we present the structure of F TraM RHH (ribbon-helix-helix) domain bound to its sbmA site. The structure indicates that a pair of TraM tetramers cooperatively binds an underwound sbmA site containing 12 base pairs per turn. The sbmA is composed of 4 copies of a 5-base-pair motif, each of which is recognized by an RHH domain. The structure reveals that a single conservative amino acid difference in the RHH ß-ribbon between F and pED208 TraM changes its specificity for its cognate 5-base-pair sequence motif. Specificity is also dictated by the positioning of 2-base-pair spacer elements within sbmA; in F sbmA, the spacers are positioned between motifs 1 and 2 and between motifs 3 and 4, whereas in pED208 sbmA, there is a single spacer between motifs 2 and 3. We also demonstrate that a pair of F TraM tetramers can cooperatively bind its sbmC site with an affinity similar to that of sbmA in spite of a lack of sequence similarity between these DNA elements. These results provide a basis for the prediction of the DNA binding properties of the family of TraM proteins.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fator F/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fator F/química , Fator F/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
6.
Exp Eye Res ; 124: 56-66, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24810222

RESUMO

Autophagy, a catabolic process by which a cell "eats" itself, turning over its own cellular constituents, plays a key role in cellular homeostasis. In an effort to maintain normal cellular function, autophagy is often up-regulated in response to environmental stresses and excessive organelle damage to facilitate aggregated protein removal. In the eye, virtually all cell types from those comprising the cornea in the front of the eye to the retinal pigment epithelium (RPE) providing a protective barrier for the retina at the back of the eye, rely on one or more aspects of autophagy to maintain structure and/or normal physiological function. In the lens autophagy plays a critical role in lens fiber cell maturation and the formation of the organelle free zone. Numerous studies delineating the role of Atg5, Vsp34 as well as FYCO1 in maintenance of lens transparency are discussed. Corneal endothelial dystrophies are also characterized as having elevated levels of autophagic proteins. Therefore, novel modulators of autophagy such as lithium and melatonin are proposed as new therapeutic strategies for this group of dystrophies. In addition, we summarize how corneal Herpes Simplex Virus (HSV-1) infection subverts the cornea's response to infection by inhibiting the normal autophagic response. Using glaucoma models we analyze the relative contribution of autophagy to cell death and cell survival. The cytoprotective role of autophagy is further discussed in an analysis of photoreceptor cell heath and function. We focus our analysis on the current understanding of autophagy in photoreceptor and RPE health, specifically on the diverse role of autophagy in rods and cones as well as its protective role in light induced degeneration. Lastly, in the RPE we highlight hybrid phagocytosis-autophagy pathways. This comprehensive review allows us to speculate on how alterations in various stages of autophagy contribute to glaucoma and retinal degenerations.


Assuntos
Autofagia/fisiologia , Córnea/citologia , Cristalino/citologia , Retina/citologia , Animais , Diferenciação Celular , Sobrevivência Celular , Humanos
7.
Plasmid ; 70(1): 18-32, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23632276

RESUMO

Bacterial conjugation as mediated by the F plasmid has been a topic of study for the past 65 years. Early research focused on events that occur on the cell surface including the pilus and its phages, recipient cell receptors, mating pair formation and its prevention via surface or entry exclusion. This short review is a reminder of the progress made in those days that will hopefully kindle renewed interest in these subjects as we approach a complete understanding of the mechanism of conjugation.


Assuntos
Conjugação Genética , DNA Bacteriano/genética , Escherichia coli/genética , Fator F/genética , Fímbrias Bacterianas/genética , Regulação Bacteriana da Expressão Gênica , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Colífagos/genética , Colífagos/metabolismo , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fator F/metabolismo , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
8.
Vis Neurosci ; 30(3): 55-64, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23611523

RESUMO

Cathepsin-D (Cat-D) is a major proteolytic enzyme in phagocytic cells. In the retinal pigment epithelium (RPE), it is responsible for the daily degradation of photoreceptor outer segments (POSs) to maintain retinal homeostasis. Melanoregulin (MREG)-mediated loss of phagocytic capacity has been linked to diminished intracellular Cat-D activity. Here, we demonstrate that loss of MREG enhances the secretion of intermediate Cat-D (48 kDa), resulting in a net enhancement of extracellular Cat-D activity. These results suggest that MREG is required to maintain Cat-D homeostasis in the RPE and likely plays a protective role in retinal health. In this regard, in the Mreg dsu/dsu mouse, we observe increased basal laminin. Loss of the Mreg dsu allele is not lethal and therefore leads to slow age-dependent changes in the RPE. Thus, we propose that this model will allow us to study potential dysregulatory functions of Cat-D in retinal disease.


Assuntos
Proteínas de Transporte/metabolismo , Catepsina D/metabolismo , Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Análise de Variância , Animais , Proteínas de Transporte/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Células Cultivadas , Regulação da Expressão Gênica/genética , Peptídeos e Proteínas de Sinalização Intracelular , L-Lactato Desidrogenase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Microscopia Imunoeletrônica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Epitélio Pigmentado da Retina/ultraestrutura , Transdução Genética
9.
PLoS One ; 7(9): e42446, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22984402

RESUMO

Humans with Hermansky-Pudlak Syndrome (HPS) or ocular albinism (OA1) display abnormal aspects of organelle biogenesis. The multigenic disorder HPS displays broad defects in biogenesis of lysosome-related organelles including melanosomes, platelet dense granules, and lysosomes. A phenotype of ocular pigmentation in OA1 is a smaller number of macromelanosomes, in contrast to HPS, where in many cases the melanosomes are smaller than normal. In these studies we define the role of the Mreg(dsu) gene, which suppresses the coat color dilution of Myo5a, melanophilin, and Rab27a mutant mice in maintaining melanosome size and distribution. We show that the product of the Mreg(dsu) locus, melanoregulin (MREG), interacts both with members of the HPS BLOC-2 complex and with Oa1 in regulating melanosome size. Loss of MREG function facilitates increase in the size of micromelanosomes in the choroid of the HPS BLOC-2 mutants ruby, ruby2, and cocoa, while a transgenic mouse overexpressing melanoregulin corrects the size of retinal pigment epithelium (RPE) macromelanosomes in Oa1(ko/ko) mice. Collectively, these results suggest that MREG levels regulate pigment incorporation into melanosomes. Immunohistochemical analysis localizes melanoregulin not to melanosomes, but to small vesicles in the cytoplasm of the RPE, consistent with a role for this protein in regulating membrane interactions during melanosome biogenesis. These results provide the first link between the BLOC pathway and Oa1 in melanosome biogenesis, thus supporting the hypothesis that intracellular G-protein coupled receptors may be involved in the biogenesis of other organelles. Furthermore these studies provide the foundation for therapeutic approaches to correct the pigment defects in the RPE of HPS and OA1.


Assuntos
Albinismo Ocular/genética , Proteínas de Transporte/metabolismo , Loci Gênicos/genética , Organelas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Albinismo Ocular/patologia , Animais , Proteínas de Transporte/genética , Linhagem Celular , Corioide/metabolismo , Corioide/patologia , Corioide/ultraestrutura , Dosagem de Genes/genética , Síndrome de Hermanski-Pudlak/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Melanossomas/metabolismo , Melanossomas/patologia , Melanossomas/ultraestrutura , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Mutação/genética , Tamanho das Organelas , Epitélio Pigmentado Ocular/metabolismo , Epitélio Pigmentado Ocular/patologia , Epitélio Pigmentado Ocular/ultraestrutura , Transporte Proteico , Proteínas de Transporte Vesicular
10.
J Bacteriol ; 194(14): 3670-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22563049

RESUMO

TraJ is the essential activator of P(Y), the promoter of the F and F-like plasmid tra operon that encodes the majority of the proteins for bacterial conjugation. By combining error-prone PCR mutagenesis with a two-plasmid screen, we isolated 55 missense mutations in traJ, each affecting the ability of TraJ to activate P(Y). These mutations define two distinct functional clusters (amino acids [aa] 21 to 117 and aa 150 to 219). Limited proteolytic analysis of TraJ suggested that the N- and C-terminal functional clusters are two structurally distinct domains. Most TraJ mutants exhibited decreased intracellular protein levels, and the HslVU protease-chaperone pair was found to be responsible for degrading those mutants without extracytoplasmic stress-induced overexpression. In vivo cross-linking analysis of TraJ mutants indicated that the N-terminal domain is responsible for dimerization. This was confirmed by the finding that the purified N-terminal region of TraJ forms dimers in solution. The levels of dimerization and in vivo activities of TraJ mutants are well correlated, suggesting that dimerization of TraJ is required for its biological function. We propose that the regulation of TraJ dimerization and/or its susceptibility to HslVU could be a key mechanism in various signaling processes for controlling bacterial conjugation in response to physiological or environmental stimuli.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Dados de Sequência Molecular , Mutagênese , Mutação , Reação em Cadeia da Polimerase , Estrutura Terciária de Proteína , Transdução de Sinais
11.
Nucleic Acids Res ; 39(15): 6775-88, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21565799

RESUMO

The conjugative transfer of F-like plasmids such as F, R1, R100 and pED208, between bacterial cells requires TraM, a plasmid-encoded DNA-binding protein. TraM tetramers bridge the origin of transfer (oriT) to a key component of the conjugative pore, the coupling protein TraD. Here we show that TraM recognizes a high-affinity DNA-binding site, sbmA, as a cooperative dimer of tetramers. The crystal structure of the TraM-sbmA complex from the plasmid pED208 shows that binding cooperativity is mediated by DNA kinking and unwinding, without any direct contact between tetramers. Sequence-specific DNA recognition is carried out by TraM's N-terminal ribbon-helix-helix (RHH) domains, which bind DNA in a staggered arrangement. We demonstrate that both DNA-binding specificity, as well as selective interactions between TraM and the C-terminal tail of its cognate TraD mediate conjugation specificity within the F-like family of plasmids. The ability of TraM to cooperatively bind DNA without interaction between tetramers leaves the C-terminal TraM tetramerization domains free to make multiple interactions with TraD, driving recruitment of the plasmid to the conjugative pore.


Assuntos
Proteínas de Bactérias/química , DNA Bacteriano/química , Proteínas de Ligação a DNA/química , Alelos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fator F/genética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína
12.
Biochemistry ; 50(15): 3095-106, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21381725

RESUMO

Transporter ProP mediates osmolyte accumulation in Escherichia coli cells exposed to high osmolality media. The cytoplasmic ProQ protein amplifies ProP activity by an unknown mechanism. The N- and C-terminal domains of ProQ are predicted to be structurally similar to known RNA chaperone proteins FinO and Hfq from E. coli. Here we demonstrate that ProQ is an RNA chaperone, binding RNA and facilitating both RNA strand exchange and RNA duplexing. Experiments performed with the isolated ProQ domains showed that the FinO-like domain serves as a high-affinity RNA-binding domain, whereas the Hfq-like domain is largely responsible for RNA strand exchange and duplexing. These data suggest that ProQ may regulate ProP production. Transcription of proP proceeds from RpoD- and RpoS-dependent promoters. Lesions at proQ affected ProP levels in an osmolality- and growth phase-dependent manner, decreasing ProP levels when proP was expressed from its own chromosomal promoters or from a heterologous plasmid-based promoter. Small RNA molecules are known to regulate cellular levels of sigma factor RpoS. ProQ did not act by changing RpoS levels since proQ lesions did not influence RpoS-dependent stationary phase thermotolerance and they affected ProP production and activity similarly in bacteria without and with an rpoS defect. Taken together, these results suggest that ProQ does not regulate proP transcription. It may act as an RNA-binding protein to regulate proP translation.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Chaperonas Moleculares/metabolismo , RNA Bacteriano/metabolismo , Simportadores/metabolismo , Sequência de Aminoácidos , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Loci Gênicos/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas/genética , Estrutura Terciária de Proteína , RNA Bacteriano/química , RNA Bacteriano/genética , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA , Simportadores/genética , Transcrição Gênica
13.
Nucleic Acids Res ; 39(10): 4450-63, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21278162

RESUMO

Bacterial conjugation is regulated by two-component repression comprising the antisense RNA FinP, and its protein co-factor FinO. FinO mediates base-pairing of FinP to the 5'-untranslated region (UTR) of traJ mRNA, which leads to translational inhibition of the transcriptional activator TraJ and subsequent down regulation of conjugation genes. Yet, little is known about how FinO binds to its RNA targets or how this interaction facilitates FinP and traJ mRNA pairing. Here, we use solution methods to determine how FinO binds specifically to its minimal high affinity target, FinP stem-loop II (SLII), and its complement SLIIc from traJ mRNA. Ribonuclease footprinting reveals that FinO contacts the base of the stem and the 3' single-stranded tails of these RNAs. The phosphorylation or oxidation of the 3'-nucleotide blocks FinO binding, suggesting FinO binds the 3'-hydroxyl of its RNA targets. The collective results allow the generation of an energy-minimized model of the FinO-SLII complex, consistent with small-angle X-ray scattering data. The repression complex model was constrained using previously reported cross-linking data and newly developed footprinting results. Together, these data lead us to propose a model of how FinO mediates FinP/traJ mRNA pairing to down regulate bacterial conjugation.


Assuntos
Regiões 5' não Traduzidas , Proteínas de Bactérias/química , RNA Antissenso/química , Proteínas de Ligação a RNA/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Antissenso/metabolismo , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease Pancreático/metabolismo
14.
RNA Biol ; 7(6): 812-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21045552

RESUMO

The conjugative transfer of F-like plasmids between bacteria is regulated by the plasmid-encoded RNA chaperone, FinO, which facilitates sense - antisense RNA interactions to regulate plasmid gene expression. FinO was thought to adopt a unique structure, however many putative homologs have been identified in microbial genomes and are considered members of the FinO_conjugation_repressor superfamily. We were interested in determining whether other members were also able to bind RNA and promote duplex formation, suggesting that this motif does indeed identify a putative RNA chaperone. We determined the crystal structure of the N. meningitidis MC58 protein NMB1681. It revealed striking similarity to FinO, with a conserved fold and a large, positively charged surface that could function in RNA interactions. Using assays developed to study FinO-FinP sRNA interactions, NMB1681, like FinO, bound tightly to FinP RNA stem-loops with short 5' and 3' single-stranded tails but not to ssRNA. It also was able to catalyze strand exchange between an RNA duplex and a complementary single-strand, and facilitated duplexing between complementary RNA hairpins. Finally, NMB1681 was able to rescue a finO deficiency and repress F plasmid conjugation. This study strongly suggests that NMB1681 is a FinO-like RNA chaperone that likely regulates gene expression through RNA-based mechanisms in N. meningitidis.


Assuntos
Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/metabolismo , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Conjugação Genética , Fator F/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência
15.
FEMS Microbiol Lett ; 310(2): 112-9, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20695900

RESUMO

TraJ is an activator of the transfer (tra) operon in the F plasmid that counteracts H-NS silencing at the main transfer promoter (P(Y)). TraJ contains 226 aa (26 670 kDa), not 229 aa as reported previously, and forms homodimers. TraJ binds DNA containing P(Y)in vivo as demonstrated using a chromatin-immunoprecipitation assay. Mutations within a predicted helix-turn-helix DNA-binding motif reduced binding and decreased mating efficiency. The deletion of four or more residues from the C-terminus of TraJ blocked its activity, but did not interfere with DNA binding. This feature, as well as homology to the C-terminal region of RovA and SlyA within the MarR/SlyA family, suggests that TraJ might counteract H-NS repression via a mechanism similar to these desilencing proteins.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Escherichia coli K12 , Sequências Hélice-Volta-Hélice , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Escherichia coli K12/química , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Alinhamento de Sequência , Deleção de Sequência
16.
Future Microbiol ; 5(7): 1057-71, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20632805

RESUMO

Conjugative plasmids are involved in the dissemination of important traits such as antibiotic resistance, virulence determinants and metabolic pathways involved in adapting to environmental niches, a process termed horizontal or lateral gene transfer. Conjugation is the process of transferring DNA from a donor to a recipient cell with the establishment of the incoming DNA and its cargo of genetic traits within the transconjugant. Conjugation is mediated by self-transmissible plasmids as well as phage-like sequences that have been integrated into the bacterial chromosome, such as integrative and conjugative elements (ICEs) that now include conjugative transposons. Both conjugative plasmids and ICEs can mediate the transfer of mobilizable elements by sharing their conjugative machinery. Conjugation can either be induced, usually by small molecules or peptides or by excision of the ICE from the host chromosome, or it can be tightly regulated by plasmid- and host-encoded factors. The transfer potential of these transfer regions depends on the integration of many signals in response to environmental and physiological cues. This review will focus on the mechanisms that influence transfer potential in these systems, particularly those of the IncF incompatibility group.


Assuntos
Adaptação Biológica , Bacteriófagos , Conjugação Genética/fisiologia , Transferência Genética Horizontal , Plasmídeos , Recombinação Genética , Conjugação Genética/genética , Evolução Molecular , Genes Bacterianos , Humanos
17.
Mol Microbiol ; 77(2): 415-30, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20497332

RESUMO

Pathways of mutagenesis are induced in microbes under adverse conditions controlled by stress responses. Control of mutagenesis by stress responses may accelerate evolution specifically when cells are maladapted to their environments, i.e. are stressed. Stress-induced mutagenesis in the Escherichia coli Lac assay occurs either by 'point' mutation or gene amplification. Point mutagenesis is associated with DNA double-strand-break (DSB) repair and requires DinB error-prone DNA polymerase and the SOS DNA-damage- and RpoS general-stress responses. We report that the RpoE envelope-protein-stress response is also required. In a screen for mutagenesis-defective mutants, we isolated a transposon insertion in the rpoE P2 promoter. The insertion prevents rpoE induction during stress, but leaves constitutive expression intact, and allows cell viability. rpoE insertion and suppressed null mutants display reduced point mutagenesis and maintenance of amplified DNA. Furthermore, sigma(E) acts independently of stress responses previously implicated: SOS/DinB and RpoS, and of sigma(32), which was postulated to affect mutagenesis. I-SceI-induced DSBs alleviated much of the rpoE phenotype, implying that sigma(E) promoted DSB formation. Thus, a third stress response and stress input regulate DSB-repair-associated stress-induced mutagenesis. This provides the first report of mutagenesis promoted by sigma(E), and implies that extracytoplasmic stressors may affect genome integrity and, potentially, the ability to evolve.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Resposta SOS em Genética , Fator sigma/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Elementos de DNA Transponíveis , DNA Bacteriano/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Mutagênese Insercional , Mutação Puntual , Regiões Promotoras Genéticas , Fator sigma/genética , Estresse Fisiológico
18.
J Bacteriol ; 192(6): 1730-4, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20081027

RESUMO

F plasmid TraF and TraH are required for F pilus assembly and F plasmid transfer. Using flotation sucrose density gradients, we found that TraF and TraH (as well as TraU and TraW) localized to the outer membrane in the presence of the complete F transfer region, especially TraV, the putative anchor. Mutational analysis of TraH revealed two domains that are important for its function and possible interaction with TrbI, which in turn has a role in stabilizing TraH.


Assuntos
Proteínas de Bactérias/metabolismo , Conjugação Genética/fisiologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Fator F , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Membrana Celular/química , Sequência Conservada , Escherichia coli/genética , Proteínas de Escherichia coli/química , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/química , Estrutura Terciária de Proteína , Transporte Proteico
19.
FEMS Microbiol Rev ; 34(1): 18-40, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19919603

RESUMO

Bacterial conjugation in Gram-negative bacteria is triggered by a signal that connects the relaxosome to the coupling protein (T4CP) and transferosome, a type IV secretion system. The relaxosome, a nucleoprotein complex formed at the origin of transfer (oriT), consists of a relaxase, directed to the nic site by auxiliary DNA-binding proteins. The nic site undergoes cleavage and religation during vegetative growth, but this is converted to a cleavage and unwinding reaction when a competent mating pair has formed. Here, we review the biochemistry of relaxosomes and ponder some of the remaining questions about the nature of the signal that begins the process.


Assuntos
Conjugação Genética/fisiologia , DNA Bacteriano/metabolismo , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo
20.
Mol Microbiol ; 70(1): 89-99, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18717787

RESUMO

F plasmid-mediated bacterial conjugation requires interactions between a relaxosome component, TraM, and the coupling protein TraD, a hexameric ring ATPase that forms the cytoplasmic face of the conjugative pore. Here we present the crystal structure of the C-terminal tail of TraD bound to the TraM tetramerization domain, the first structural evidence of relaxosome-coupling protein interactions. The structure reveals the TraD C-terminal peptide bound to each of four symmetry-related grooves on the surface of the TraM tetramer. Extensive protein-protein interactions were observed between the two proteins. Mutational analysis indicates that these interactions are specific and required for efficient F conjugation in vivo. Our results suggest that specific interactions between the C-terminal tail of TraD and the TraM tetramerization domain might lead to more generalized interactions that stabilize the relaxosome-coupling protein complex in preparation for conjugative DNA transfer.


Assuntos
Proteínas de Bactérias/genética , Conjugação Genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Fator F/genética , Proteínas de Membrana/genética , Sequência de Aminoácidos , DNA Bacteriano/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...