Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 14(5): e0154023, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37737639

RESUMO

IMPORTANCE: Dissimilatory nitrate/nitrite reduction to ammonium (DNRA) is a microbial energy-conserving process that reduces NO3 - and/or NO2 - to NH4 +. Interestingly, DNRA-catalyzing microorganisms possessing nrfA genes are occasionally found harboring nosZ genes encoding nitrous oxide reductases, i.e., the only group of enzymes capable of removing the potent greenhouse gas N2O. Here, through a series of physiological experiments examining DNRA metabolism in one of such microorganisms, Bacillus sp. DNRA2, we have discovered that N2O may delay the transition to DNRA upon an oxic-to-anoxic transition, unless timely removed by the nitrous oxide reductases. These observations suggest a novel explanation as to why some nrfA-possessing microorganisms have retained nosZ genes: to remove N2O that may otherwise interfere with the transition from O2 respiration to DNRA.


Assuntos
Compostos de Amônio , Nitritos , Nitritos/metabolismo , Compostos de Amônio/metabolismo , Nitratos/metabolismo , Óxido Nitroso/metabolismo , Oxirredutases/metabolismo , Desnitrificação
2.
Sci Total Environ ; 903: 166284, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37586512

RESUMO

Nitrous oxide (N2O) emitted from agricultural soils destroys stratospheric ozone and contributes to global warming. A promising approach to reduce emissions is fertilizing the soil using organic wastes augmented by non-denitrifying N2O-reducing bacteria (NNRB). To realize this potential, we need a suite of NNRB strains that fulfill several criteria: efficient reduction of N2O, ability to grow in organic waste, and ability to survive in farmland soil. In this study, we enriched such organisms by sequential anaerobic batch incubations with N2O and reciprocating inoculation between the sterilized substrates of anaerobic manure digestate and soils. 16S rDNA amplicon sequencing and metagenomics analysis showed that a cluster of bacteria containing nosZ genes encoding N2O-reductase, was enriched during the incubation process. Strains of several dominant members were then isolated and characterized, and three of them were found to harbor the nosZ gene but none of the other denitrifying genes, thus qualifying as NNRB. The selected isolates were tested for their capacities to reduce N2O emissions from three different typical Chinese farmland soils. The results indicated the significant mitigation effect of these isolates, even in very acidic red soil. In conclusion, this study demonstrated a strategy to engineer the soil microbiome with promising NNRB with high adaptability to livestock manure digestate as well as different agricultural soils, which would be suitable for developing novel fertilizer for farmland application to efficiently mitigate the N2O emissions from agricultural soils.

3.
Appl Environ Microbiol ; 89(2): e0174522, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36662572

RESUMO

Rhizobia living as microsymbionts inside nodules have stable access to carbon substrates, but also must survive as free-living bacteria in soil where they are starved for carbon and energy most of the time. Many rhizobia can denitrify, thus switch to anaerobic respiration under low O2 tension using N-oxides as electron acceptors. The cellular machinery regulating this transition is relatively well known from studies under optimal laboratory conditions, while little is known about this regulation in starved organisms. It is, for example, not known if the strong preference for N2O- over NO3- reduction in bradyrhizobia is retained under carbon limitation. Here, we show that starved cultures of a Bradyrhizobium strain with respiration rates 1 to 18% of well-fed cultures reduced all available N2O before touching provided NO3-. These organisms, which carry out complete denitrification, have the periplasmic nitrate reductase NapA but lack the membrane-bound nitrate reductase NarG. Proteomics showed similar levels of NapA and NosZ (N2O reductase), excluding that the lack of NO3- reduction was due to low NapA abundance. Instead, this points to a metabolic-level phenomenon where the bc1 complex, which channels electrons to NosZ via cytochromes, is a much stronger competitor for electrons from the quinol pool than the NapC enzyme, which provides electrons to NapA via NapB. The results contrast the general notion that NosZ activity diminishes under carbon limitation and suggest that bradyrhizobia carrying NosZ can act as strong sinks for N2O under natural conditions, implying that this criterion should be considered in the development of biofertilizers. IMPORTANCE Legume cropped farmlands account for substantial N2O emissions globally. Legumes are commonly inoculated with N2-fixing bacteria, rhizobia, to improve crop yields. Rhizobia belonging to Bradyrhizobium, the microsymbionts of several economically important legumes, are generally capable of denitrification but many lack genes encoding N2O reductase and will be N2O sources. Bradyrhizobia with complete denitrification will instead act as sinks since N2O-reduction efficiently competes for electrons over nitrate reduction in these organisms. This phenomenon has only been demonstrated under optimal conditions and it is not known how carbon substrate limitation, which is the common situation in most soils, affects the denitrification phenotype. Here, we demonstrate that bradyrhizobia retain their strong preference for N2O under carbon starvation. The findings add basic knowledge about mechanisms controlling denitrification and support the potential for developing novel methods for greenhouse gas mitigation based on legume inoculants with the dual capacity to optimize N2 fixation and minimize N2O emission.


Assuntos
Bradyrhizobium , Fabaceae , Bradyrhizobium/genética , Elétrons , Desnitrificação , Oxirredutases/metabolismo , Nitratos/química , Nitrato Redutase , Bactérias/metabolismo , Verduras/metabolismo , Óxido Nitroso , Solo/química
4.
Environ Microbiol ; 24(4): 1887-1901, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35106904

RESUMO

Stimulating litho-autotrophic denitrification in aquifers with hydrogen is a promising strategy to remove excess NO3 - , but it often entails accumulation of the cytotoxic intermediate NO2 - and the greenhouse gas N2 O. To explore if these high NO2 - and N2 O concentrations are caused by differences in the genomic composition, the regulation of gene transcription or the kinetics of the reductases involved, we isolated hydrogenotrophic denitrifiers from a polluted aquifer, performed whole-genome sequencing and investigated their phenotypes. We therefore assessed the kinetics of NO2 - , NO, N2 O, N2 and O2 as they depleted O2 and transitioned to denitrification with NO3 - as the only electron acceptor and hydrogen as the electron donor. Isolates with a complete denitrification pathway, although differing intermediate accumulation, were closely related to Dechloromonas denitrificans, Ferribacterium limneticum or Hydrogenophaga taeniospiralis. High NO2 - accumulation was associated with the reductases' kinetics. While available, electrons only flowed towards NO3 - in the narG-containing H. taeniospiralis but flowed concurrently to all denitrification intermediates in the napA-containing D. denitrificans and F. limneticum. The denitrification regulator RegAB, present in the napA strains, may further secure low intermediate accumulation. High N2 O accumulation only occurred during the transition to denitrification and is thus likely caused by delayed N2 O reductase expression.


Assuntos
Desnitrificação , Nitratos , Hidrogênio/metabolismo , Nitratos/metabolismo , Dióxido de Nitrogênio , Oxirredutases/genética , Oxirredutases/metabolismo , Fenótipo
5.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163408

RESUMO

The greenhouse gas nitrous oxide (N2O) has strong potential to drive climate change. Soils are a major source of N2O, with microbial nitrification and denitrification being the primary processes involved in such emissions. The soybean endosymbiont Bradyrhizobium diazoefficiens is a model microorganism to study denitrification, a process that depends on a set of reductases, encoded by the napEDABC, nirK, norCBQD, and nosRZDYFLX genes, which sequentially reduce nitrate (NO3-) to nitrite (NO2-), nitric oxide (NO), N2O, and dinitrogen (N2). In this bacterium, the regulatory network and environmental cues governing the expression of denitrification genes rely on the FixK2 and NnrR transcriptional regulators. To understand the role of FixK2 and NnrR proteins in N2O turnover, we monitored real-time kinetics of NO3-, NO2-, NO, N2O, N2, and oxygen (O2) in a fixK2 and nnrR mutant using a robotized incubation system. We confirmed that FixK2 and NnrR are regulatory determinants essential for NO3- respiration and N2O reduction. Furthermore, we demonstrated that N2O reduction by B. diazoefficiens is independent of canonical inducers of denitrification, such as the nitrogen oxide NO3-, and it is negatively affected by acidic and alkaline conditions. These findings advance the understanding of how specific environmental conditions and two single regulators modulate N2O turnover in B. diazoefficiens.


Assuntos
Bradyrhizobium/metabolismo , Glycine max/microbiologia , Gases de Efeito Estufa/metabolismo , Óxido Nitroso/metabolismo , Simbiose
6.
ISME J ; 16(2): 580-590, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34489539

RESUMO

Inoculating agricultural soils with nitrous oxide respiring bacteria (NRB) can reduce N2O-emission, but would be impractical as a standalone operation. Here we demonstrate that digestates obtained after biogas production are suitable substrates and vectors for NRB. We show that indigenous NRB in digestates grew to high abundance during anaerobic enrichment under N2O. Gas-kinetics and meta-omic analyses showed that these NRB's, recovered as metagenome-assembled genomes (MAGs), grew by harvesting fermentation intermediates of the methanogenic consortium. Three NRB's were isolated, one of which matched the recovered MAG of a Dechloromonas, deemed by proteomics to be the dominant producer of N2O-reductase in the enrichment. While the isolates harbored genes required for a full denitrification pathway and could thus both produce and sequester N2O, their regulatory traits predicted that they act as N2O sinks in soil, which was confirmed experimentally. The isolates were grown by aerobic respiration in digestates, and fertilization with these NRB-enriched digestates reduced N2O emissions from soil. Our use of digestates for low-cost and large-scale inoculation with NRB in soil can be taken as a blueprint for future applications of this powerful instrument to engineer the soil microbiome, be it for enhancing plant growth, bioremediation, or any other desirable function.


Assuntos
Biocombustíveis , Óxido Nitroso , Agricultura , Bactérias/genética , Bactérias/metabolismo , Desnitrificação , Óxido Nitroso/metabolismo , Solo , Microbiologia do Solo
7.
ISME J ; 16(1): 26-37, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34211102

RESUMO

Soil pH is a key controller of denitrification. We analysed the metagenomics/transcriptomics and phenomics of two soils from a long-term liming experiment, SoilN (pH 6.8) and un-limed SoilA (pH 3.8). SoilA had severely delayed N2O reduction despite early transcription of nosZ (mainly clade I), encoding N2O reductase, by diverse denitrifiers. This shows that post-transcriptionally hampered maturation of the NosZ apo-protein at low pH is a generic phenomenon. Identification of transcript reads of several accessory genes in the nos cluster indicated that enzymes for NosZ maturation were present across a range of organisms, eliminating their absence as an explanation for the failure to produce a functional enzyme. nir transcript abundances (for NO2- reductase) in SoilA suggest that low NO2- concentrations in acidic soils, often ascribed to abiotic degradation, are primarily due to biological activity. The accumulation of NO2- in neutral soil was ascribed to high nar expression (nitrate reductase). The -omics results revealed dominance of nirK over nirS in both soils while qPCR showed the opposite, demonstrating that standard primer pairs only capture a fraction of the nirK pool. qnor encoding NO reductase was strongly expressed in SoilA, implying an important role in controlling NO. Production of HONO, for which some studies claim higher, others lower, emissions from NO2- accumulating soil, was estimated to be ten times higher from SoilA than from SoilN. The study extends our understanding of denitrification-driven gas emissions and the diversity of bacteria involved and demonstrates that gene and transcript quantifications cannot always reliably predict community phenotypes.


Assuntos
Nitritos , Solo , Desnitrificação , Concentração de Íons de Hidrogênio , Cinética , Nitritos/análise , Óxido Nitroso/metabolismo , Solo/química , Microbiologia do Solo
9.
Biochem Soc Trans ; 49(1): 495-505, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33544133

RESUMO

The interaction between rhizobia and their legume host plants conduces to the formation of specialized root organs called nodules where rhizobia differentiate into bacteroids which fix atmospheric nitrogen to the benefit of the plant. This beneficial symbiosis is of importance in the context of sustainable agriculture as legumes do not require the addition of nitrogen fertilizer to grow. Interestingly, nitric oxide (NO) has been detected at various steps of the rhizobium-legume symbiosis where it has been shown to play multifaceted roles. Both bacterial and plant partners are involved in NO synthesis in nodules. To better understand the role of NO, and in particular the role of bacterial NO, at all steps of rhizobia-legumes interaction, the enzymatic sources of NO have to be elucidated. In this review, we discuss different enzymatic reactions by which rhizobia may potentially produce NO. We argue that there is most probably no NO synthase activity in rhizobia, and that instead the NO2- reductase nirK, which is part of the denitrification pathway, is the main bacterial source of NO. The nitrate assimilation pathway might contribute to NO production but only when denitrification is active. The different approaches to measure NO in rhizobia are also addressed.


Assuntos
Óxido Nítrico/metabolismo , Rhizobium/metabolismo , Fabaceae/metabolismo , Fabaceae/microbiologia , Redes e Vias Metabólicas/fisiologia , Nitrogênio/metabolismo , Fixação de Nitrogênio/fisiologia , Raízes de Plantas/metabolismo , Simbiose/fisiologia
10.
Environ Microbiol ; 23(4): 2244-2259, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33463871

RESUMO

Bradyrhizobia are common members of soil microbiomes and known as N2 -fixing symbionts of economically important legumes. Many are also denitrifiers, which can act as sinks or sources for N2 O. Inoculation with compatible rhizobia is often needed for optimal N2 -fixation, but the choice of inoculant may have consequences for N2 O emission. Here, we determined the phylogeny and denitrification capacity of Bradyrhizobium strains, most of them isolated from peanut-nodules. Analyses of genomes and denitrification end-points showed that all were denitrifiers, but only ~1/3 could reduce N2 O. The N2 O-reducing isolates had strong preference for N2 O- over NO3 - -reduction. Such preference was also observed in a study of other bradyrhizobia and tentatively ascribed to competition between the electron pathways to Nap (periplasmic NO3 - reductase) and Nos (N2 O reductase). Another possible explanation is lower abundance of Nap than Nos. Here, proteomics revealed that Nap was instead more abundant than Nos, supporting the hypothesis that the electron pathway to Nos outcompetes that to Nap. In contrast, Paracoccus denitrificans, which has membrane-bond NO3 - reductase (Nar), reduced N2 O and NO3 - simultaneously. We propose that the control at the metabolic level, favouring N2 O reduction over NO3 - reduction, applies also to other denitrifiers carrying Nos and Nap but lacking Nar.


Assuntos
Bradyrhizobium , Bradyrhizobium/genética , Desnitrificação , Elétrons , Óxido Nitroso , Solo , Microbiologia do Solo
11.
Environ Microbiol ; 22(6): 2182-2195, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32157782

RESUMO

Fungal denitrification is claimed to produce non-negligible amounts of N2 O in soils, but few tested species have shown significant activity. We hypothesized that denitrifying fungi would be found among those with assimilatory nitrate reductase, and tested 20 such batch cultures for their respiratory metabolism, including two positive controls, Fusarium oxysporum and Fusarium lichenicola, throughout the transition from oxic to anoxic conditions in media supplemented with NO 2 - . Enzymatic reduction of NO 2 - (NIR) and NO (NOR) was assessed by correcting measured NO- and N2 O-kinetics for abiotic NO- and N2 O-production (sterile controls). Significant anaerobic respiration was only confirmed for the positive controls and for two of three Fusarium solani cultures. The NO kinetics in six cultures showed NIR but not NOR activity, observed through the accumulation of NO. Others had NOR but not NIR activity, thus reducing abiotically produced NO to N2 O. The presence of candidate genes (nirK and p450nor) was confirmed in the positive controls, but not in some of the NO or N2 O accumulating cultures. Based on our results, we conclude that only the Fusarium cultures were able to sustain anaerobic respiration and produced low amounts of N2 O as a response to an abiotic NO production from the medium.


Assuntos
Fusarium/metabolismo , Óxidos de Nitrogênio/metabolismo , Anaerobiose , Fusarium/genética , Genes Fúngicos
12.
Environ Microbiol ; 22(1): 17-31, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31271499

RESUMO

Bradyrhizobia are abundant soil bacteria, which can form nitrogen-fixing symbioses with leguminous plants, including important crops such as soybean, cowpea and peanut. Many bradyrhizobia can denitrify, but studies have hitherto focused on a few model organisms. We screened 39 diverse Bradyrhizobium strains, isolated from legume nodules. Half of them were unable to reduce N2 O, making them sources of this greenhouse gas. Most others could denitrify NO3 - to N2 . Time-resolved gas kinetics and transcription analyses during transition to anaerobic respiration revealed a common regulation of nirK, norCB and nosZ (encoding NO2 - , NO and N2 O reductases), and differing regulation of napAB (encoding periplasmic NO3 - reductase). A prominent feature in all N2 -producing strains was a virtually complete hampering of NO3 - reduction in the presence of N2 O. In-depth analyses suggest that this was due to a competition between electron transport pathways, strongly favouring N2 O over NO3 - reduction. In a natural context, bacteria with this feature would preferentially reduce available N2 O, produced by themselves or other soil bacteria, making them powerful sinks for this greenhouse gas. One way to augment such populations in agricultural soils is to develop inoculants for legume crops with dual capabilities of efficient N2 -fixation and efficient N2 O reduction.


Assuntos
Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Fabaceae/microbiologia , Óxido Nitroso/metabolismo , Oxirredutases/genética , Nódulos Radiculares de Plantas/microbiologia , Microbiologia do Solo , Bradyrhizobium/isolamento & purificação , Nitrogênio/metabolismo , Oxirredução , Oxirredutases/metabolismo
13.
Front Microbiol ; 10: 2746, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849890

RESUMO

Emissions of the potent greenhouse gas N2O is one of the environmental problems associated with intensive use of synthetic N fertilizers, and novel N2O mitigation strategies are needed to minimize fertilizer applications and N2O release without affecting agricultural efficiencies. Increased incorporation of legume crops in agricultural practices offers a sustainable alternative. Legumes, in their symbiosis with nitrogen fixing bacteria, rhizobia, reduce the need for fertilizers and also respond to the need for increased production of plant-based proteins. Not all combinations of rhizobia and legumes result in efficient nitrogen fixation, and legume crops therefore often need to be inoculated with compatible rhizobial strains. Recent research has demonstrated that some rhizobia are also very efficient N2O reducers. Several nutritionally and economically important legumes form root nodules in symbiosis with bacteria belonging to Bradyrhizobium. Here, the host-ranges of fourteen N2O reducing Bradyrhizobium strains were tested on six legume hosts; cowpea, groundnut, mung bean, haricot bean, soybean, and alfalfa. The plants were grown for 35 days in pots in sterile sand supplemented with N-free nutrient solution. Cowpea was the most promiscuous host nodulated by all test strains, followed by groundnut (11 strains) and mungbean (4 strains). Three test strains were able to nodulate all these three legumes, while none nodulated the other three hosts. For cowpea, five strains increased the shoot dry weight and ten strains the shoot nitrogen content (pairwise comparison; p < 0.05). For groundnut the corresponding results were three and nine strains. The symbiotic effectiveness for the different strains ranged from 45 to 98% in cowpea and 34 to 95% in groundnut, relative to fertilized controls. The N2O reduction capacity of detached nodules from cowpea plants inoculated with one of these strains confirmed active N2O reduction inside the nodules. When released from senescent nodules such strains are expected to also act as sinks for N2O produced by denitrifying organisms in the soil microbial community. Our strategy to search among known N2O-reducing Bradyrhizobium strains for their N2-fixation effectiveness successfully identified several strains which can potentially be used for the production of legume inoculants with the dual capacities of efficacious N2-fixation and N2O reduction.

14.
Water Res ; 151: 381-387, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30616050

RESUMO

The strong greenhouse gas nitrous oxide (N2O) can be emitted from wastewater treatment systems as a byproduct of ammonium oxidation and as the last intermediate in the stepwise reduction of nitrate to N2 by denitrifying organisms. A potential strategy to reduce N2O emissions would be to enhance the activity of N2O reductase (NOS) in the denitrifying microbial community. A survey of existing literature on denitrification in wastewater treatment systems showed that the N2O reducing capacity (VmaxN2O→N2) exceeded the capacity to produce N2O (VmaxNO3→N2O) by a factor of 2-10. This suggests that denitrification can be an effective sink for N2O, potentially scavenging a fraction of the N2O produced by ammonium oxidation or abiotic reactions. We conducted a series of incubation experiments with freshly sampled activated sludge from a wastewater treatment system in Oslo and found that the ratio α = VmaxN2O→N2/VmaxNO3→N2O fluctuated between 2 and 5 in samples taken at intervals over a period of 5 weeks. Adding a cocktail of carbon substrates resulted in increasing rates, but had no significant effect on α. Based on these results - complemented with qPCR and metaproteomic data - we discuss whether the overcapacity to reduce N2O can be ascribed to gene/protein abundance ratios (nosZ/nir), or whether in-cell competition between the reductases for electrons could be of greater importance.


Assuntos
Compostos de Amônio , Desnitrificação , Óxido Nitroso , Esgotos , Águas Residuárias
15.
Proc Natl Acad Sci U S A ; 115(46): 11820-11825, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30385636

RESUMO

When oxygen becomes limiting, denitrifying bacteria must prepare for anaerobic respiration by synthesizing the reductases NAR (NO3- → NO2-), NIR (NO2- → NO), NOR (2NO → N2O), and NOS (N2O → N2), either en bloc or sequentially, to avoid entrapment in anoxia without energy. Minimizing the metabolic burden of this precaution is a plausible fitness trait, and we show that the model denitrifier Paracoccus denitrificans achieves this by synthesizing NOS in all cells, while only a minority synthesize NIR. Phenotypic diversification with regards to NIR is ascribed to stochastic initiation of gene transcription, which becomes autocatalytic via NO production. Observed gas kinetics suggest that such bet hedging is widespread among denitrifying bacteria. Moreover, in response to oxygenation, P. denitrificans preserves NIR in the poles of nongrowing persister cells, ready to switch to anaerobic respiration in response to sudden anoxia. Our findings add dimensions to the regulatory biology of denitrification and identify regulatory traits that decrease N2O emissions.


Assuntos
Desnitrificação/fisiologia , Nitratos/metabolismo , Paracoccus denitrificans/metabolismo , Bactérias/metabolismo , Hipóxia/metabolismo , Óxido Nitroso/metabolismo , Oxirredutases/metabolismo , Oxigênio/metabolismo
16.
Sci Rep ; 8(1): 5711, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29632323

RESUMO

Here we show that a commercial blocking reagent (G2) based on modified eukaryotic DNA significantly improved DNA extraction efficiency. We subjected G2 to an inter-laboratory testing, where DNA was extracted from the same clay subsoil using the same batch of kits. The inter-laboratory extraction campaign revealed large variation among the participating laboratories, but the reagent increased the number of PCR-amplified16S rRNA genes recovered from biomass naturally present in the soils by one log unit. An extensive sequencing approach demonstrated that the blocking reagent was free of contaminating DNA, and may therefore also be used in metagenomics studies that require direct sequencing.


Assuntos
DNA Ribossômico/isolamento & purificação , RNA Ribossômico 16S/isolamento & purificação , Kit de Reagentes para Diagnóstico/normas , Biomassa , Argila , Contaminação por DNA , DNA Ribossômico/genética , Laboratórios , Metagenômica , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo
17.
Front Microbiol ; 9: 3208, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30671037

RESUMO

Denitrification allows sustained respiratory metabolism during periods of anoxia, an advantage in soils with frequent anoxic spells. However, the gains may be more than evened out by the energy cost of producing the denitrification machinery, particularly if the anoxic spell is short. This dilemma could explain the evolution of different regulatory phenotypes observed in model strains, such as sequential expression of the four denitrification genes needed for a complete reduction of nitrate to N2, or a "bet hedging" strategy where all four genes are expressed only in a fraction of the cells. In complex environments such strategies would translate into progressive onset of transcription by the members of the denitrifying community. We exposed soil microcosms to anoxia, sampled for amplicon sequencing of napA/narG, nirK/nirS, and nosZ genes and transcripts after 1, 2 and 4 h, and monitored the kinetics of NO, N2O, and N2. The cDNA libraries revealed a succession of transcribed genes from active denitrifier populations, which probably reflects various regulatory phenotypes in combination with cross-talks via intermediates ( NO 2 - , NO) produced by the "early onset" denitrifying populations. This suggests that the regulatory strategies observed in individual isolates are also displayed in complex communities, and pinpoint the importance for successive sampling when identifying active key player organisms.

19.
Sci Rep ; 7(1): 14778, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116183

RESUMO

Quinoline is biodegradable under anaerobic conditions, but information about the degradation kinetics and the involved microorganisms is scarce. Here, the dynamics of a quinoline-degrading bacterial consortium were studied in anoxic batch cultures containing nitrate. The cultures removed 83.5% of the quinoline during the first 80 hours, which were dominated by denitrification, and then switched to methanogenesis when the nitrogen oxyanions were depleted. Time-resolved community analysis using pyrosequencing revealed that denitrifiying bacteria belonging to the genus Thauera were enriched during the denitrification stage from 12.2% to 38.8% and 50.1% relative abundance in DNA and cDNA libraries, respectively. This suggests that they are key organisms responsible for the initial attack on quinoline. Altogether, 13 different co-abundance groups (CAGs) containing 76 different phylotypes were involved, directly or indirectly, in quinoline degradation. The dynamics of these CAGs show that specific phylotypes were associated with different phases of the degradation. Members of Rhodococcus and Desulfobacterium, as well as Rhodocyclaceae- and Syntrophobacteraceae-related phylotypes, utilized initial metabolites of the quinoline, while the resulting smaller molecules were used by secondary fermenters belonging to Anaerolineae. The concerted action by the different members of this consortium resulted in an almost complete anaerobic mineralization of the quinoline.


Assuntos
Bactérias/metabolismo , Desnitrificação , Microbiota , Quinolinas/metabolismo , Anaerobiose , Bactérias/genética , Biodegradação Ambiental
20.
Environ Microbiol ; 19(12): 4882-4896, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28892283

RESUMO

Ammonia oxidising bacteria (AOB) are thought to emit more nitrous oxide (N2 O) than ammonia oxidising archaea (AOA), due to their higher N2 O yield under oxic conditions and denitrification in response to oxygen (O2 ) limitation. We determined the kinetics of growth and turnover of nitric oxide (NO) and N2 O at low cell densities of Nitrosomonas europaea (AOB) and Nitrosopumilus maritimus (AOA) during gradual depletion of TAN (NH3 + NH4+) and O2 . Half-saturation constants for O2 and TAN were similar to those determined by others, except for the half-saturation constant for ammonium in N. maritimus (0.2 mM), which is orders of magnitudes higher than previously reported. For both strains, cell-specific rates of NO turnover and N2 O production reached maxima near O2 half-saturation constant concentration (2-10 µM O2 ) and decreased to zero in response to complete O2 -depletion. Modelling of the electron flow in N. europaea demonstrated low electron flow to denitrification (≤1.2% of the total electron flow), even at sub-micromolar O2 concentrations. The results corroborate current understanding of the role of NO in the metabolism of AOA and suggest that denitrification is inconsequential for the energy metabolism of AOB, but possibly important as a route for dissipation of electrons at high ammonium concentration.


Assuntos
Amônia/metabolismo , Archaea/metabolismo , Óxido Nítrico/biossíntese , Nitrosomonas europaea/metabolismo , Óxido Nitroso/metabolismo , Oxigênio/metabolismo , Compostos de Amônio/metabolismo , Desnitrificação/fisiologia , Elétrons , Cinética , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...