Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 45(7): 1766-1769, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32235994

RESUMO

The unique ring-shaped intensity patterns and helical phase fronts of optical vortices make them useful in many applications. Here we report for the first time, to the best of our knowledge, efficient Raman frequency conversion between vortex modes in a twisted hydrogen-filled single-ring hollow core photonic crystal fiber (SR-PCF). High-fidelity transmission of optical vortices in an untwisted SR-PCF becomes more and more difficult as the orbital angular momentum (OAM) order increases, due to scattering at structural imperfections in the fiber microstructure. In a helically twisted SR-PCF, however, the degeneracy between left- and right-handed versions of the same mode is lifted, with the result that they are topologically protected from such scattering. With launch efficiencies of ${\sim}{75}\% $∼75%, a high damage threshold and broadband guidance, these fibers are ideal for performing nonlinear experiments that require the polarization state and azimuthal order of the interacting modes to be preserved over long distances. Vortex coherence waves of internal molecular motion carrying angular momentum are excited in the gas, permitting the polarization and OAM of the Raman bands to be tailored, even in spectral regions where conventional solid-core waveguides are opaque or susceptible to optical damage.

2.
Opt Lett ; 44(20): 5049-5052, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31613260

RESUMO

It was recently reported that a photonic crystal fiber (PCF) with no structural core guides light if a permanent chiral twist is introduced by spinning the fiber preform during the draw. The intriguing guidance mechanism behind this novel effect has many remarkable features; for example, it intrinsically supports circularly polarized helical Bloch modes (HBMs) that carry multiple optical vortices, making twisted PCFs of interest in fields such as optical micro-manipulation, imaging, quantum optics, and optical communications. Here we report for the first time, to the best of our knowledge, that a twisted coreless PCF supports not just one but a family of guided HBMs, each member of which has a unique transverse field distribution and harmonic spectrum. By making detailed interferometric measurements of the near-field phase and amplitude distributions of HBMs, and expanding them as a series of Bessel beams, we are able to extract the amplitude of each azimuthal and radial HBM harmonic. Good agreement is found with the numerical solutions of Maxwell's equations. The results shed light on the properties of this curious new optical phenomenon.

3.
Opt Express ; 27(10): 14392-14399, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31163889

RESUMO

We report the use of prism-assisted side-coupling to investigate the spatio-temporal dynamics of photoionization in an Ar-filled hollow-core photonic crystal fiber. By launching four different LP core modes we are able to probe temporal and spatial changes in the modal refractive index on timescales from a few hundred picoseconds to several hundred microseconds after the ionization event. We experimentally analyze the underlying gas density waves and find good agreement with quantitative and qualitative hydrodynamic predictions. Moreover, we observe periodic modulations in the MHz-range lasting for a few microseconds, indicating nanometer-scale vibrations of the fiber structure, driven by gas density waves.

4.
Phys Rev Lett ; 122(14): 143902, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31050443

RESUMO

Broadband-tunable sources of circularly polarized light are crucial in fields such as laser science, biomedicine, and spectroscopy. Conventional sources rely on nonlinear wavelength conversion and polarization control using standard optical components and are limited by the availability of suitably transparent crystals and glasses. Although a gas-filled hollow-core photonic crystal fiber provides pressure-tunable dispersion, long well-controlled optical path lengths, and high Raman conversion efficiency, it is unable to preserve a circular polarization state, typically exhibiting weak linear birefringence. Here we report a revolutionary approach based on a helically twisted hollow-core photonic crystal fiber, which displays circular birefringence, thus robustly maintaining a circular polarization state against external perturbations. This makes it possible to generate pure circularly polarized Stokes and anti-Stokes signals by rotational Raman scattering in hydrogen. The polarization state of the frequency-shifted Raman bands can be continuously varied by tuning the gas pressure in the vicinity of the gain-suppression point. The results pave the way to a new generation of compact and efficient fiber-based sources of broadband light with a fully controllable polarization state.

5.
Opt Lett ; 42(11): 2074-2077, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569848

RESUMO

A hollow-core single-ring photonic crystal fiber (SR-PCF) consists of a ring of capillaries arranged around a central hollow core. Spinning the preform during drawing introduces a continuous helical twist, offering a novel means of controlling the modal properties of hollow-core SR-PCF. For example, twisting geometrically increases the effective axial propagation constant of the LP01-like modes of the capillaries, providing a means of optimizing the suppression of HOMs, which occurs when the LP11-like core mode phase-matches to the LP01-like modes of the surrounding capillaries. (In a straight fiber, optimum suppression occurs for a capillary-to-core diameter ratio d/D=0.682.) Twisting also introduces circular birefringence (to be studied in a future Letter) and has a remarkable effect on the transverse intensity profiles of the higher-order core modes, forcing the two-lobed LP11-like mode in the untwisted fiber to become three-fold symmetric in the twisted case. These phenomena are explored by means of extensive numerical modeling, an analytical model, and a series of experiments. Prism-assisted side-coupling is used to measure the losses, refractive indices, and near-field patterns of individual fiber modes in both the straight and twisted cases.

6.
Opt Lett ; 41(7): 1672-5, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27192315

RESUMO

Continuously twisted solid-core photonic crystal fiber (PCF) exhibits pure circular birefringence (optical activity), making it ideal for current sensors based on the Faraday effect. By numerical analysis, we identify the PCF geometry for which the circular birefringence (which scales linearly with twist rate) is a maximum. For silica-air PCF, this occurs at a shape parameter (diameter-to-spacing ratio of the hollow channels) of 0.37 and a scale parameter (spacing-to-wavelength) of 1.51. This result is confirmed experimentally by testing a range of different structures. To demonstrate the effectiveness of twisted PCF as a current sensor, a length of fiber is placed on the axis of a 7.6 cm long solenoid, and the Faraday rotation is measured at different values of dc current. The system is then used to chart the wavelength dependence of the Verdet constant.

7.
Opt Lett ; 40(20): 4639-42, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26469583

RESUMO

We demonstrate experimentally and theoretically that the core-guided mode in helically twisted photonic crystal fiber exhibits resonantly enhanced optical activity and circular dichroism in the vicinity of anti-crossings with leaky orbital angular momentum (OAM) modes in the cladding. This arises because the anti-crossings for left and right circularly polarized core modes occur at slightly different wavelengths.

8.
Opt Lett ; 40(7): 1238-41, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25831302

RESUMO

Compression of 250-fs, 1-µJ pulses from a KLM Yb:YAG thin-disk oscillator down to 9.1 fs is demonstrated. A kagomé-PCF with a 36-µm core-diameter is used with a pressure gradient from 0 to 40 bar of krypton. Compression to 22 fs is achieved by 1200 fs2 group-delay-dispersion provided by chirped mirrors. By coupling the output into a second kagomé-PCF with a pressure gradient from 0 to 25 bar of argon, octave spanning spectral broadening via the soliton-effect is observed at 18-W average output power. Self-compression to 9.1 fs is measured, with compressibility to 5 fs predicted. Also observed is strong emission in the visible via dispersive wave generation, amounting to 4% of the total output power.

9.
Opt Express ; 22(13): 15388-96, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24977799

RESUMO

Transmission of UV light with high beam quality and pointing stability is desirable for many experiments in atomic, molecular and optical physics. In particular, laser cooling and coherent manipulation of trapped ions with transitions in the UV require stable, single-mode light delivery. Transmitting even ~2 mW CW light at 280 nm through silica solid-core fibers has previously been found to cause transmission degradation after just a few hours due to optical damage. We show that photonic crystal fiber of the kagomé type can be used for effectively single-mode transmission with acceptable loss and bending sensitivity. No transmission degradation was observed even after >100 hours of operation with 15 mW CW input power. In addition it is shown that implementation of the fiber in a trapped ion experiment increases the coherence time of the internal state transfer due to an increase in beam pointing stability.

10.
Opt Lett ; 38(13): 2215-7, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23811881

RESUMO

A 19-cell hollow-core photonic crystal fiber reaching 1.8±0.5 dB/km loss at 1530 nm is reported. Despite expanded corner holes in the first ring adjacent to the core, and only five cladding rings, the minimum loss is close to the previously published record of 1.7 dB/km at a comparable wavelength, achieved in a fiber with seven cladding rings. Since each additional cladding ring requires a significant increase in fabrication time and complexity, it is highly desirable to use as few as possible while still achieving low loss. Modeling results confirm that further reducing cladding deformations would yield only a small decrease in loss. This demonstrates that loss comparable to the previously demonstrated lowest-loss bandgap fibers can be achieved with fiber structures that are significantly simpler and faster to fabricate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...